Home Man
Today's Posts

Linux & Unix Commands - Search Man Pages

OpenDarwin 7.2.1 - man page for routed (opendarwin section 8)

ROUTED(8)			   BSD System Manager's Manual				ROUTED(8)

     routed -- network RIP and router discovery routing daemon

     routed [-sqdghmpAt] [-T tracefile] [-F net[/mask[,metric]]]

     Routed is a daemon invoked at boot time to manage the network routing tables.  It uses Rout-
     ing Information Protocol, RIPv1 (RFC 1058), RIPv2 (RFC 1723), and Internet Router Discovery
     Protocol (RFC 1256) to maintain the kernel routing table.	The RIPv1 protocol is based on
     the reference 4.3BSD daemon.

     It listens on the udp(4) socket for the route(8) service (see services(5)) for Routing
     Information Protocol packets.  It also sends and receives multicast Router Discovery ICMP
     messages.	If the host is a router, routed periodically supplies copies of its routing
     tables to any directly connected hosts and networks.  It also advertise or solicits default
     routes using Router Discovery ICMP messages.

     When started (or when a network interface is later turned on), routed uses an AF_ROUTE
     address family facility to find those directly connected interfaces configured into the sys-
     tem and marked "up".  It adds necessary routes for the interfaces to the kernel routing ta-
     ble.  Soon after being first started, and provided there is at least one interface on which
     RIP has not been disabled, routed deletes all pre-existing non-static routes in kernel ta-
     ble.  Static routes in the kernel table are preserved and included in RIP responses if they
     have a valid RIP metric (see route(8) ).

     If more than one interface is present (not counting the loopback interface), it is assumed
     that the host should forward packets among the connected networks.  After transmitting a RIP
     request and Router Discovery Advertisements or Solicitations on a new interface, the daemon
     enters a loop, listening for RIP request and response and Router Discover packets from other

     When a request packet is received, routed formulates a reply based on the information main-
     tained in its internal tables.  The response packet generated contains a list of known
     routes, each marked with a "hop count" metric (a count of 16 or greater is considered "infi-
     nite").  Advertised metrics reflect the metric associated with interface (see ifconfig(8) ),
     so setting the metric on an interface is an effective way to steer traffic.

     Responses do not contain routes with a first hop on the requesting network to implement in
     part split-horizon.

     The routing table maintained by the daemon includes space for several gateways for each des-
     tination to speed recovery from a failing router.	RIP response packets received are used to
     update the routing tables provided they are from one of the several currently recognized
     gateways or advertise a better metric than at least one of the existing gateways.

     When an update is applied, routed records the change in its own tables and updates the ker-
     nel routing table if the best route to the destination changes.  The change in the kernel
     routing table is reflected in the next batch of response packets sent.  If the next response
     is not scheduled for a while, a flash update response containing only recently changed
     routes is sent.

     In addition to processing incoming packets, routed also periodically checks the routing ta-
     ble entries.  If an entry has not been updated for 3 minutes, the entry's metric is set to
     infinity and marked for deletion.	Deletions are delayed until the route has been advertised
     with an infinite metric to insure the invalidation is propagated throughout the local inter-
     net.  This is a form of poison reverse.

     Routes in the kernel table that are added or changed as a result of ICMP Redirect messages
     are deleted after a while to minimize black-holes.  When a TCP connection suffers a timeout,
     the kernel tells routed, which deletes all redirected routes through the gateway involved,
     advances the age of all RIP routes through the gateway to allow an alternate to be chosen,
     and advances of the age of any relevant Router Discovery Protocol default routes.

     Hosts acting as internetwork routers gratuitously supply their routing tables every 30 sec-
     onds to all directly connected hosts and networks.  These RIP responses are sent to the
     broadcast address on nets that support broadcasting, to the destination address on point-to-
     point links, and to the router's own address on other networks.  If RIPv2 is enabled, multi-
     cast packets are sent on interfaces that support multicasting.

     If no response is received on a remote interface, if there are errors while sending
     responses, or if there are more errors than input or output (see netstat(8) ), then the
     cable or some other part of the interface is assumed to be disconnected or broken, and
     routes are adjusted appropriately.

     The Internet Router Discovery Protocol is handled similarly.  When the daemon is supplying
     RIP routes, it also listens for Router Discovery Solicitations and sends Advertisements.
     When it is quiet and only listening to other RIP routers, it sends Solicitations and listens
     for Advertisements.  If it receives a good Advertisement, it stops listening for broadcast
     or multicast RIP responses.  It tracks several advertising routers to speed recovery when
     the currently chosen router dies.	If all discovered routers disappear, the daemon resumes
     listening to RIP responses.

     While using Router Discovery (which happens by default when the system has a single network
     interface and a Router Discover Advertisement is received), there is a single default route
     and a variable number of redirected host routes in the kernel table.

     The Router Discover standard requires that advertisements have a default "lifetime" of 30
     minutes.  That means should something happen, a client can be without a good route for 30
     minutes.  It is a good idea to reduce the default to 45 seconds using -P rdisc_interval=45
     on the command line or rdisc_interval=45 in the /etc/gateways file.

     See the pm_rdisc facility described below to support "legacy" systems that can handle nei-
     ther RIPv2 nor Router Discovery.

     By default, neither Router Discovery advertisements nor solicitations are sent over point to
     point links (e.g. PPP).

     Options supported by routed:

     -s      this option forces routed to supply routing information.  This is the default if
	     multiple network interfaces are present on which RIP or Router Discovery have not
	     been disabled, and if the kernel switch ipforwarding=1.

     -q      is the opposite of the -s option.

     -d      Do not run in the background.  This option is meant for interactive use.

     -g      This flag is used on internetwork routers to offer a route to the "default" destina-
	     tion.  It is equivalent to -F 0/0,1 and is present mostly for historical reasons.	A
	     better choice is -P pm_rdisc on the command line or pm_rdisc in the /etc/gateways
	     file.  since a larger metric will be used, reducing the spread of the potentially
	     dangerous default route.  This is typically used on a gateway to the Internet, or on
	     a gateway that uses another routing protocol whose routes are not reported to other
	     local routers.  Notice that because a metric of 1 is used, this feature is danger-
	     ous.  It is more commonly accidently used to create chaos with routing loop than to
	     solve problems.

     -h      This causes host or point-to-point routes to not be advertised, provided there is a
	     network route going the same direction.  That is a limited kind of aggregation.
	     This option is useful on gateways to ethernets that have other gateway machines con-
	     nected with point-to-point links such as SLIP.

     -m      This causes the machine to advertise a host or point-to-point route to its primary
	     interface.  It is useful on multi-homed machines such as NFS servers.  This option
	     should not be used except when the cost of the host routes it generates is justified
	     by the popularity of the server.  It is effective only when the machine is supplying
	     routing information, because there is more than one interface.  The -m option over-
	     rides the -q option to the limited extent of advertising the host route.

     -A      do not ignore RIPv2 authentication if we do not care about RIPv2 authentication.
	     This option is required for conformance with RFC 1723.  However, it makes no sense
	     and breaks using RIP as a discovery protocol to ignore all RIPv2 packets that carry
	     authentication when this machine does not care about authentication.

     -T tracefile
	     increases the debugging level to at least 1 and causes debugging information to be
	     appended to the trace file.  Note that because of security concerns, it is wisest to
	     not run routed routinely with tracing directed to a file.

     -t      increases the debugging level, which causes more information to be logged on the
	     tracefile specified with -T or standard out.  The debugging level can be increased
	     or decreased with the SIGUSR1 or SIGUSR2 signals.

     -F net[/mask][,metric]
	     minimize routes in transmissions via interfaces with addresses that match net/mask,
	     and synthesizes a default route to this machine with the metric.  The intent is to
	     reduce RIP traffic on slow, point-to-point links such as PPP links by replacing many
	     large UDP packets of RIP information with a single, small packet containing a "fake"
	     default route.  If metric is absent, a value of 14 is assumed to limit the spread of
	     the "fake" default route.

	     This is a dangerous feature that when used carelessly can cause routing loops.
	     Notice also that more than one interface can match the specified network number and
	     mask.  See also -g.

     -P parms
	     is equivalent to adding the parameter line parms to the /etc/gateways file.

     Any other argument supplied is interpreted as the name of a file in which the actions of
     routed should be logged.  It is better to use -T instead of appending the name of the trace
     file to the command.

     routed also supports the notion of "distant" passive or active gateways.  When routed is
     started, it reads the file /etc/gateways to find such distant gateways which may not be
     located using only information from a routing socket, to discover if some of the local gate-
     ways are passive, and to obtain other parameters.	Gateways specified in this manner should
     be marked passive if they are not expected to exchange routing information, while gateways
     marked active should be willing to exchange RIP packets.  Routes through passive gateways
     are installed in the kernel's routing tables once upon startup and are not included in
     transmitted RIP responses.

     Distant active gateways are treated like network interfaces.  RIP responses are sent to the
     distant active gateway.  If no responses are received, the associated route is deleted from
     the kernel table and RIP responses advertised via other interfaces.  If the distant gateway
     resumes sending RIP responses, the associated route is restored.

     Such gateways can be useful on media that do not support broadcasts or multicasts but other-
     wise act like classic shared media like Ethernets such as some ATM networks.  One can list
     all RIP routers reachable on the ATM network in /etc/gateways with a series of "host" lines.

     Gateways marked external are also passive, but are not placed in the kernel routing table
     nor are they included in routing updates.	The function of external entries is to indicate
     that another routing process will install such a route if necessary, and that alternate
     routes to that destination should not be installed by routed.  Such entries are only
     required when both routers may learn of routes to the same destination.

     The /etc/gateways file is comprised of a series of lines, each in one of the following for-
     mats or consist of parameters described below:

     net Nname[/mask] gateway Gname metric value <passive | active | extern>

     host Hname gateway Gname metric value <passive | active | extern>

     Nname or Hname is the name of the destination network or host.  It may be a symbolic network
     name or an Internet address specified in "dot" notation (see inet(3) ). (If it is a name,
     then it must either be defined in /etc/networks or /etc/hosts, or named(8), must have been
     started before routed.)

     mask is an optional number between 1 and 32 indicating the netmask associated with Nname.

     Gname is the name or address of the gateway to which RIP responses should be forwarded.

     Value is the hop count to the destination host or network.   host hname  is equivalent to
     net  nname/32 .

     One of the keywords passive, active or external must be present to indicate whether the
     gateway should be treated as passive or active (as described above), or whether the gateway
     is external to the scope of the RIP protocol.

     Lines that start with neither "net" nor "host" must consist of one or more of the following
     parameter settings, separated by commas or blanks:

	     indicates that the other parameters on the line apply to the interface name ifname.

	     advertises a route to network nname with mask mask and the supplied metric (default
	     1).  This is useful for filling "holes" in CIDR allocations.  This parameter must
	     appear by itself on a line.

	     Do not use this feature unless necessary.	It is dangerous.

	     specifies a RIPv2 password that will be included on all RIPv2 responses sent and
	     checked on all RIPv2 responses received.  The password must not contain any blanks,
	     tab characters, commas or '#' characters.

     no_ag   turns off aggregation of subnets in RIPv1 and RIPv2 responses.

	     turns off aggregation of networks into supernets in RIPv2 responses.

	     is equivalent no_rip no_rdisc.

     no_rip  disables all RIP processing on the specified interface.  If no interfaces are
	     allowed to process RIP packets, routed acts purely as a router discovery daemon.
	     No_rip is equivalent to no_ripv1_in no_ripv2_in no_ripv1_out no_ripv2_out.

	     Note that turning off RIP without explicitly turning on router discovery advertise-
	     ments with rdisc_adv or -s causes routed to act as a client router discovery daemon,
	     not advertising.

	     causes RIPv1 received responses to be ignored.

	     causes RIPv2 received responses to be ignored.

	     turns off RIPv1 output and causes RIPv2 advertisements to be multicast when possi-

	     disables the Internet Router Discovery Protocol.

	     disables the transmission of Router Discovery Solicitations.

	     specifies that Router Discovery solicitations should be sent, even on point-to-point
	     links, which by default only listen to Router Discovery messages.

	     disables the transmission of Router Discovery Advertisements

	     specifies that Router Discovery advertisements should be sent, even on point-to-
	     point links, which by default only listen to Router Discovery messages

	     specifies that Router Discovery packets should be broadcast instead of multicast.

	     sets the preference in Router Discovery Advertisements to the integer N.

	     sets the nominal interval with which Router Discovery Advertisements are transmitted
	     to N seconds and their lifetime to 3*N.

	     has an identical effect to -F net[/mask][,metric] with the network and mask coming
	     from the specified interface.

	     is similar to fake_default.  When RIPv2 routes are multicast, so that RIPv1 listen-
	     ers cannot receive them, this feature causes a RIPv1 default route to be broadcast
	     to RIPv1 listeners.  Unless modified with fake_default, the default route is broad-
	     cast with a metric of 14.	That serves as a "poor man's router discovery" protocol.

     Note that the netmask associated with point-to-point links (such as SLIP or PPP, with the
     IFF_POINTOPOINT flag) is used by routed to infer the netmask used by the remote system when
     RIPv1 is used.

     /etc/gateways  for distant gateways

     udp(4), icmp(4).

     Internet Transport Protocols, XSIS 028112, Xerox System Integration Standard.

     It does not always detect unidirectional failures in network interfaces (e.g., when the out-
     put side fails).

     The routed command appeared in 4.2BSD.

4.4BSD					   June 1, 1996 				   4.4BSD

All times are GMT -4. The time now is 12:12 PM.

Unix & Linux Forums Content Copyrightę1993-2018. All Rights Reserved.
Show Password