Sponsored Content
Operating Systems Solaris Sharing a physical disk with an LDOM Post 303042253 by hicksd8 on Thursday 19th of December 2019 04:16:14 PM
Old 12-19-2019
One thing for sure is that only one of the nodes (Solaris 11 Global or Solaris 10 LDOM) can have control of the volume. In any situation, having two operating systems writing to a volume simultaneously is a recipe for instant filesystem corruption. One operating system must control file opening, locking, etc. Even in a cluster scenario using dual tailed storage, a major function of the cluster suite is to control which node has exclusive control of the volume and effect disciplined failover when necessary.

Therefore, like any two nodes, one option is to mount the volume on one node, configure a NFS share on that node, and mount the volume using a NFS client from the second node. The first node then controls ALL activity on the volume.
These 4 Users Gave Thanks to hicksd8 For This Post:
 

9 More Discussions You Might Find Interesting

1. UNIX for Dummies Questions & Answers

physical volume and physical disk.

Hello, I need explanations about physical disks and physical volumes. What is the difference between these 2 things? In fact, i am trying to understand what the AIX lspv2command does. Thank you in advance. (2 Replies)
Discussion started by: VeroL
2 Replies

2. HP-UX

determine the physical size of the hard disk

Hi is there a cmd in hpux 11 to determine the physical size of the hard disk. not bdf command. i have searched the other threads here but cant find an answer. thank you guys (4 Replies)
Discussion started by: hoffies
4 Replies

3. Solaris

List all resources on physical host LDOM server

Hello, I have a SUN T5240 running Solaris 10 with Logical Domain Manager (v 1.0.3). You can use the "ldm" command to display current resources on the box. Is there away to display all the "physical resources" on the box(i.e.,used and unused). For example, "ldm ls" will tell me what the... (5 Replies)
Discussion started by: stephanpitts
5 Replies

4. Solaris

Sharing a local disk between to solaris machines

Hi, I recently added a disk on a solaris 9 and I wanted to make it accessible for another machine, using the same name here is what i did : On the machine holding the internal disk in vfstab i added the line /dev/dsk/c1t1d0s4 /dev/rdsk/c1t1d0s4 /SHARED2 ufs 2 yes ... (2 Replies)
Discussion started by: zionassedo
2 Replies

5. Solaris

Installing Solaris OS on LDOM SAN Disk

I have viewed a few previous posts regarding this, but none of them quite described or worked with my issue. I am out of local disk space on my LDOM Manager but still have plenty of SAN vCPU and Memory available so I am trying to install a new LDOM OS on SAN. I have exposed the SAN to the... (0 Replies)
Discussion started by: MobileGSP
0 Replies

6. Red Hat

Sharing SAN disk with multiple severs

Hi , I had a requirement to share a san disk between two rhel severs. I am planning to discover the same disk in two rhel nodes and mount it. Is it a feasible solution? and what kind of issues we may encounter mounting same disk in two OS's parallel ? (2 Replies)
Discussion started by: nanduri
2 Replies

7. Solaris

Disk expansion on LDOM Guest

Hi, There is LDOM Guest where I need to expand /u02 file systems on it. It is residing on a Solaris 11 Hypervisor (Primary Domain). The storage is expanded on vdisk presented to Hypervisor. I need steps to expand the /u02 on LDOM Guest. (2 Replies)
Discussion started by: vidya_sagar2003
2 Replies

8. Solaris

Exporting physical disk to ldom or ZFS volume

Generally, this is what we do:- On primary, export 2 LUNs (add-vdsdev). On primary, assign these disks to the ldom in question (add-vdisk). On ldom, created mirrored zpool from these two disks. On one server (which is older) we have:- On primary, create mirrored zpool from the two LUNs.... (4 Replies)
Discussion started by: psychocandy
4 Replies

9. Solaris

Disk alignment inside of an LDOM

Hi! Quick background for the question... I have Solaris 11.4 control/primary zone with some LDOM's on top of it. I have some raw iSCSI LUN's presented to the control zone/primary zone from a NetApp, which I then pass up to the LDOM's via the VDS/vdisk. So basically the LDOM VM's see the disk as... (1 Reply)
Discussion started by: rtmg
1 Replies
xVM(5)							Standards, Environments, and Macros						    xVM(5)

NAME
xVM, xvm - Solaris x86 virtual machine monitor DESCRIPTION
The Solaris xVM software (hereafter xVM) is a virtualization system, or virtual machine monitor, for the Solaris operating system on x86 systems. Solaris xVM enables you to run multiple virtual machines simultaneously on a single physical machine, often referred to as the host. Each virtual machine, known as a domain, runs its own complete and distinct operating system instance, which includes its own I/O devices. This differs from zone-based virtualization, in which all zones shares the same kernel. (See zones(5).) Each domain has a name and a UUID. Domains can be renamed but typically retain the same UUID. A domain ID is an integer that is specific to a running instance. It changes on every boot of the guest domain. Non-running domains do not have a domain ID. The xVM hypervisor is responsible for controlling and executing each of the domains and runs with full privileges. xVM also includes con- trol tools for management of the domains. These tools run under a specialized control domain, often referred to as domain 0. To run Solaris xVM, select the entry labelled Solaris xVM in the grub(5) menu at boot time. This boots the hypervisor, which in turn boots the control domain. The control domain is a version of Solaris modified to run under the xVM hypervisor. At the point at which the control domain is running, the control tools are enabled. In most other respects, the domain 0 instance behaves just like a "normal" instance of the Solaris operating system. The xVM hypervisor delegates control of the physical devices present on the machine to domain 0. Thus, by default, only domain 0 has access to such devices. The other guest domains running on the host are presented with virtualized devices with which they interact as they would physical devices. The xVM hypervisor schedules running domains (including domain 0) onto the set of physical CPUs as configured. The xVM scheduler is con- strained by domain configuration (the number of virtual CPUs allocated, and so forth) as well as any run-time configuration, such as pin- ning virtual CPUs to physical CPUs. The default domain scheduler in xVM is the credit scheduler. This is a work-conserving, fair-share domain scheduler; it balances virtual CPUs of domains across the allowed set of physical CPUs according to workload. xVM supports two modes of virtualization. In the first, the operating system is aware that it is running under xVM. This mode is called paravirtualization. In the second mode, called fully virtualized, the guest operating system is not aware that it is running under xVM. A fully virtualized guest domain is sometimes referred to as a Hardware-assisted Virtual Machine (HVM). A variation on a Hardware-assisted Virtual Machine is to use paravirtualized drivers for improved performance. This variation is abbreviated as HVM + PV. With paravirtualization, each device, such as a networking interface, is presented as a fully virtual interface, and specific drivers are required for it. Each virtual device is associated with a physical device and the driver is split into two. A frontend driver runs in the guest domain and communicates over a virtual data interface to a backend driver. The backend driver currently runs in domain 0 and communi- cates with both the frontend driver and the physical device underneath it. Thus, a guest domain can make use of a network card on the host, store data on a host disk drive, and so forth. Solaris xVM currently supports two main split drivers used for I/O. Networking is done by means of the xnb (xVM Networking Backend) driv- ers. Guest domains, whether Solaris or another operating system, use xnb to transmit and receive networking traffic. Typically, a physical NIC is used for communicating with the guest domains, either shared or dedicated. Solaris xVM provides networking access to guest domains by means of MAC-based virtual network switching. Block I/O is provided by the xdb (xVM Disk Backend) driver, which provides virtual disk access to guest domains. In the control domain, the disk storage can be in a file, a ZFS volume, or a physical device. Using ZFS volumes as the virtual disk for your guest domains allows you to take a snapshot of the storage. As such, you can keep known-good snapshots of the guest domain OS installation, and revert the snapshot (using zfs rollback) if the domain has a problem. The zfs clone com- mand can be used for quick provisioning of new domains. For example, you might install Solaris as a guest domain, run sys-unconfig(1M), then clone that disk image for use in new Solaris domains. Installing Solaris in this way requires only a configuration step, rather than a full install. When running as a guest domain, Solaris xVM uses the xnf and xdf drivers to talk to the relevant backend drivers. In addition to these drivers, the Solaris console is virtualized when running as a guest domain; this driver interacts with the xenconsoled(1M) daemon running in domain 0 to provide console access. A given system can have both paravirtualized and fully virtualized domains running simultaneously. The control domain must always run in paravirtualized mode, because it must work closely with the hypervisor layer. As guest domains do not share a kernel, xVM does not require that every guest domain be Solaris. For paravirtualized mode and for all types of operating systems, the only requirement is that the operating system be modified to support the virtual device interfaces. Fully-virtualized guest domains are supported under xVM with the assistance of virtualization extensions available on some x86 CPUs. These extensions must be present and enabled; some BIOS versions disable the extensions by default. In paravirtualized mode, Solaris identifies the platform as i86xpv, as seen in the return of the following uname(1) command: % uname -i i86xpv Generally, applications do not need to be aware of the platform type. It is recommended that any ISA identification required by an applica- tion use the -p option (for ISA or processor type) to uname, rather than the -i option, as shown above. On x86 platforms, regardless of whether Solaris is running under xVM, uname -p always returns i386. You can examine the domcaps driver to determine whether a Solaris instance is running as domain 0: # cat /dev/xen/domcaps control_d Note that the domcaps file might also contain additional information. However, the first token is always control_d when running as domain 0. xVM hosts provide a service management facility (SMF) service (see smf(5)) with the FMRI: svc:/system/xvm/domains:default ...to control auto-shutdown and auto-start of domains. By default, all running domains are shutdown when the host is brought down by means of init 6 or a similar command. This shutdown is analogous to entering: # virsh shutdown mydomain A domain can have the setting: on_xend_stop=ignore ...in which case the domain is not shut down even if the host is. Such a setting is the effective equivalent of: # virsh destroy mydomain If a domain has the setting: on_xend_start=start ...then the domain is automatically booted when the xVM host boots. Disabling the SMF service by means of svcadm(1M) disables this behavior for all domains. Solaris xVM is partly based on the work of the open source Xen community. Control Tools The control tools are the utilities shipped with Solaris xVM that enable you to manage xVM domains. These tools interact with the daemons that support xVM: xend(1M), xenconsoled(1M), and xenstored(1M), each described in its own man page. The daemons are, in turn, managed by the SMF. You install new guest domains with the command line virt-install(1M) or the graphical interface, virt-manager. The main interface for command and control of both xVM and guest domains is virsh(1M). Users should use virsh(1M) wherever possible, as it provides a generic and stable interface for controlling virtualized operating systems. However, some xVM operations are not yet implemented by virsh. In those cases, the legacy utility xm(1M) can be used for detailed control. The configuration of each domain is stored by xend(1M) after it has been created by means of virt-install, and can be viewed using the virsh dumpxml or xm list -l commands. Direct modification of this configuration data is not recommended; the command-line utility inter- faces should be used instead. Solaris xVM supports live migration of domains by means of the xm migrate command. This allows a guest domain to keep running while the host running the domain transfers ownership to another physical host over the network. The remote host must also be running xVM or a com- patible version of Xen, and must accept migration connections from the current host (see xend(1M)). For migration to work, both hosts must be able to access the storage used by the domU (for example, over iSCSI or NFS), and have enough resources available to run the migrated domain. Both hosts must currently reside on the same subnet for the guest domain networking to con- tinue working properly. Also, both hosts should have similar hardware. For example, migrating from a host with AMD processors to one with Intel processors can cause problems. Note that the communication channel for migration is not a secure connection. GLOSSARY
backend Describes the other half of a virtual driver from the frontend driver. The backend driver provides an interface between the virtual device and an underlying physical device. control domain The special guest domain running the control tools and given direct hardware access by the hypervisor. Often referred to as domain 0. domain 0 See control domain. frontend Describes a virtual device and its associated driver in a guest domain. A frontend driver communicates with a backend driver hosted in a different guest domain. full virtualization Running an unmodified operating system with hardware assistance. guest domain A virtual machine instance running on a host. Unless the guest is domain 0, such a domain is also called a domain-U, where U stands for "unprivileged". host The physical machine running xVM. Hardware-assisted Virtual Machine (HVM) A fully-virtualized guest domain. node The name used by the virsh(1M) utility for a host. virtual machine monitor (VMM) Hypervisor software, such as xVM, that manages multiple domains. SEE ALSO
uname(1), dladm(1M), svcadm(1M), sys-unconfig(1M), virsh(1M), virt-install(1M), xend(1M), xenconsoled(1M), xenstored(1M), xm(1M), zfs(1M), attributes(5), grub(5), live_upgrade(5), smf(5), zones(5) NOTES
Any physical Ethernet datalink (as shown by dladm show-phys) can be used to network guest domains. SunOS 5.11 14 Jan 2009 xVM(5)
All times are GMT -4. The time now is 10:03 AM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy