Home Man
Today's Posts

Linux & Unix Commands - Search Man Pages
Man Page or Keyword Search:
Select Section of Man Page:
Select Man Page Repository:

NetBSD 6.1.5 - man page for ipsec (netbsd section 4)

IPSEC(4)			   BSD Kernel Interfaces Manual 			 IPSEC(4)

     ipsec -- IP security protocol

     ipsec is a security protocol in Internet Protocol (IP) layer.  ipsec is defined for both
     IPv4 and IPv6 (inet(4) and inet6(4)).  ipsec consists of two sub-protocols:

     Encapsulated Security Payload (ESP) protects IP payload from wire-tapping (interception) by
	     encrypting it with secret key cryptography algorithms.

     Authentication Header (AH) guarantees integrity of IP packet and protects it from intermedi-
	     ate alteration or impersonation, by attaching cryptographic checksum computed by
	     one-way hash functions.

     ipsec has two operation modes:

     Transport mode is for protecting peer-to-peer communication between end nodes.

     Tunnel mode includes IP-in-IP encapsulation operation and is designed for security gateways,
	     as in Virtual Private Network (VPN) configurations.

     Since version 6, NetBSD uses the IPSEC implementation formerly known as FAST_IPSEC.  Its
     specifics and kernel options are describes in the fast_ipsec(4) manual page.  The previous
     implementation is still supported for a transition period.  See kame_ipsec(4) for details.

   Kernel interface
     ipsec is controlled by key management engine and policy engine, in the operating system ker-

     Key management engine can be accessed from the userland by using PF_KEY sockets.  The PF_KEY
     socket API is defined in RFC2367.

     Policy engine can be controlled by extended part of PF_KEY API, setsockopt(2) operations,
     and sysctl(3) interface.  The kernel implements extended version of PF_KEY interface, and
     allows you to define IPsec policy like per-packet filters.  setsockopt(2) interface is used
     to define per-socket behavior, and sysctl(3) interface is used to define host-wide default

     The kernel code does not implement dynamic encryption key exchange protocol like IKE
     (Internet Key Exchange).  That should be implemented as userland programs (usually as
     daemons), by using the above described APIs.

   Policy management
     The kernel implements experimental policy management code.  You can manage the IPsec policy
     in two ways.  One is to configure per-socket policy using setsockopt(2).  The other is to
     configure kernel packet filter-based policy using PF_KEY interface, via setkey(8).  In both
     cases, IPsec policy must be specified with syntax described in ipsec_set_policy(3).

     With setsockopt(2), you can define IPsec policy in per-socket basis.  You can enforce par-
     ticular IPsec policy onto packets that go through particular socket.

     With setkey(8) you can define IPsec policy against packets, using sort of packet filtering
     rule.  Refer to setkey(8) on how to use it.

     In the latter case, ``default'' policy is allowed for use with setkey(8).	By configuring
     policy to default, you can refer system-wide sysctl(8) variable for default settings.  The
     following variables are available.  1 means ``use'', and 2 means ``require'' in the syntax.

     Name				  Type		Changeable
     net.inet.ipsec.esp_trans_deflev	  integer	yes
     net.inet.ipsec.esp_net_deflev	  integer	yes
     net.inet.ipsec.ah_trans_deflev	  integer	yes
     net.inet.ipsec.ah_net_deflev	  integer	yes
     net.inet6.ipsec6.esp_trans_deflev	  integer	yes
     net.inet6.ipsec6.esp_net_deflev	  integer	yes
     net.inet6.ipsec6.ah_trans_deflev	  integer	yes
     net.inet6.ipsec6.ah_net_deflev	  integer	yes

     If kernel finds no matching policy system wide default value is applied.  System wide
     default is specified by the following sysctl(8) variables.  0 means ``discard'' which asks
     the kernel to drop the packet.  1 means ``none''.

     Name				  Type		Changeable
     net.inet.ipsec.def_policy		  integer	yes
     net.inet6.ipsec6.def_policy	  integer	yes

   Miscellaneous sysctl variables
     The following variables are accessible via sysctl(8), for tweaking kernel IPsec behavior:

     Name				  Type		Changeable
     net.inet.ipsec.ah_cleartos 	  integer	yes
     net.inet.ipsec.ah_offsetmask	  integer	yes
     net.inet.ipsec.dfbit		  integer	yes
     net.inet.ipsec.ecn 		  integer	yes
     net.inet.ipsec.debug		  integer	yes
     net.inet6.ipsec6.ecn		  integer	yes
     net.inet6.ipsec6.debug		  integer	yes

     The variables are interpreted as follows:

	     If set to non-zero, the kernel clears type-of-service field in the IPv4 header dur-
	     ing AH authentication data computation.  The variable is for tweaking AH behavior to
	     interoperate with devices that implement RFC1826 AH.  It should be set to non-zero
	     (clear the type-of-service field) for RFC2402 conformance.

	     During AH authentication data computation, the kernel will include 16bit fragment
	     offset field (including flag bits) in IPv4 header, after computing logical AND with
	     the variable.  The variable is for tweaking AH behavior to interoperate with devices
	     that implement RFC1826 AH.  It should be set to zero (clear the fragment offset
	     field during computation) for RFC2402 conformance.

	     The variable configures the kernel behavior on IPv4 IPsec tunnel encapsulation.  If
	     set to 0, DF bit on the outer IPv4 header will be cleared.  1 means that the outer
	     DF bit is set regardless from the inner DF bit.  2 means that the DF bit is copied
	     from the inner header to the outer.  The variable is supplied to conform to RFC2401
	     chapter 6.1.

	     If set to non-zero, IPv4 IPsec tunnel encapsulation/decapsulation behavior will be
	     friendly to ECN (explicit congestion notification), as documented in
	     draft-ietf-ipsec-ecn-02.txt.  gif(4) talks more about the behavior.

	     If set to non-zero, debug messages will be generated via syslog(3).

     Variables under net.inet6.ipsec6 tree has similar meaning as the net.inet.ipsec counterpart.

     The ipsec protocol works like plug-in to inet(4) and inet6(4) protocols.  Therefore, ipsec
     supports most of the protocols defined upon those IP-layer protocols.  Some of the proto-
     cols, like icmp(4) or icmp6(4), may behave differently with ipsec.  This is because ipsec
     can prevent icmp(4) or icmp6(4) routines from looking into IP payload.

     ioctl(2), socket(2), ipsec_set_policy(3), fast_ipsec(4), icmp6(4), intro(4), ip6(4),
     kame_ipsec(4), racoon(8), setkey(8), sysctl(8)

     Daniel L. McDonald, Craig Metz, and Bao G. Phan, PF_KEY Key Management API, Version 2, RFC,

     The IPsec support is subject to change as the IPsec protocols develop.

     There is no single standard for policy engine API, so the policy engine API described herein
     is just for the version introduced by KAME.

     AH and tunnel mode encapsulation may not work as you might expect.  If you configure inbound
     ``require'' policy against AH tunnel or any IPsec encapsulating policy with AH (like
     ``esp/tunnel/A-B/use ah/transport/A-B/require''), tunneled packets will be rejected.  This
     is because we enforce policy check on inner packet on reception, and AH authenticates encap-
     sulating (outer) packet, not the encapsulated (inner) packet (so for the receiving kernel
     there's no sign of authenticity).	The issue will be solved when we revamp our policy engine
     to keep all the packet decapsulation history.

     Under certain condition, truncated result may be raised from the kernel against SADB_DUMP
     and SADB_SPDDUMP operation on PF_KEY socket.  This occurs if there are too many database
     entries in the kernel and socket buffer for the PF_KEY socket is insufficient.  If you
     manipulate many IPsec key/policy database entries, increase the size of socket buffer or use
     sysctl(8) interface.

BSD					 January 16, 2012				      BSD

All times are GMT -4. The time now is 01:29 AM.

Unix & Linux Forums Content Copyrightę1993-2018. All Rights Reserved.
Show Password