👤
Home Man
Search
Today's Posts
Register

Linux & Unix Commands - Search Man Pages
Man Page or Keyword Search:
Select Section of Man Page:
Select Man Page Repository:

Linux 2.6 - man page for netlink (linux section 7)

NETLINK(7)			    Linux Programmer's Manual			       NETLINK(7)

NAME
       netlink - communication between kernel and user space (AF_NETLINK)

SYNOPSIS
       #include <asm/types.h>
       #include <sys/socket.h>
       #include <linux/netlink.h>

       netlink_socket = socket(AF_NETLINK, socket_type, netlink_family);

DESCRIPTION
       Netlink	is used to transfer information between kernel and user-space processes.  It con-
       sists of a standard sockets-based interface for user space processes and an internal  ker-
       nel  API for kernel modules.  The internal kernel interface is not documented in this man-
       ual page.  There is also an obsolete netlink interface via netlink character devices; this
       interface is not documented here and is provided only for backward compatibility.

       Netlink is a datagram-oriented service.	Both SOCK_RAW and SOCK_DGRAM are valid values for
       socket_type.  However, the netlink protocol does not distinguish between datagram and  raw
       sockets.

       netlink_family  selects	the kernel module or netlink group to communicate with.  The cur-
       rently assigned netlink families are:

       NETLINK_ROUTE
	      Receives routing and link updates and may be used  to  modify  the  routing  tables
	      (both IPv4 and IPv6), IP addresses, link parameters, neighbor setups, queueing dis-
	      ciplines, traffic classes and packet classifiers (see rtnetlink(7)).

       NETLINK_W1
	      Messages from 1-wire subsystem.

       NETLINK_USERSOCK
	      Reserved for user-mode socket protocols.

       NETLINK_FIREWALL
	      Transport IPv4 packets from netfilter to user space.  Used by ip_queue kernel  mod-
	      ule.

       NETLINK_INET_DIAG
	      INET socket monitoring.

       NETLINK_NFLOG
	      Netfilter/iptables ULOG.

       NETLINK_XFRM
	      IPsec.

       NETLINK_SELINUX
	      SELinux event notifications.

       NETLINK_ISCSI
	      Open-iSCSI.

       NETLINK_AUDIT
	      Auditing.

       NETLINK_FIB_LOOKUP
	      Access to FIB lookup from user space.

       NETLINK_CONNECTOR
	      Kernel  connector.   See	Documentation/connector/* in the Linux kernel source tree
	      for further information.

       NETLINK_NETFILTER
	      Netfilter subsystem.

       NETLINK_IP6_FW
	      Transport IPv6 packets from netfilter to user space.  Used by ip6_queue kernel mod-
	      ule.

       NETLINK_DNRTMSG
	      DECnet routing messages.

       NETLINK_KOBJECT_UEVENT
	      Kernel messages to user space.

       NETLINK_GENERIC
	      Generic netlink family for simplified netlink usage.

       Netlink	messages consist of a byte stream with one or multiple nlmsghdr headers and asso-
       ciated payload.	The byte stream should be accessed only with the standard NLMSG_* macros.
       See netlink(3) for further information.

       In  multipart  messages	(multiple  nlmsghdr  headers  with associated payload in one byte
       stream) the first and all following headers have the NLM_F_MULTI flag set, except for  the
       last header which has the type NLMSG_DONE.

       After each nlmsghdr the payload follows.

	   struct nlmsghdr {
	       __u32 nlmsg_len;    /* Length of message including header. */
	       __u16 nlmsg_type;   /* Type of message content. */
	       __u16 nlmsg_flags;  /* Additional flags. */
	       __u32 nlmsg_seq;    /* Sequence number. */
	       __u32 nlmsg_pid;    /* Sender port ID. */
	   };

       nlmsg_type  can be one of the standard message types: NLMSG_NOOP message is to be ignored,
       NLMSG_ERROR message signals an error and  the  payload  contains  an  nlmsgerr  structure,
       NLMSG_DONE message terminates a multipart message.

	   struct nlmsgerr {
	       int error;	 /* Negative errno or 0 for acknowledgements */
	       struct nlmsghdr msg;  /* Message header that caused the error */
	   };

       A  netlink  family  usually specifies more message types, see the appropriate manual pages
       for that, for example, rtnetlink(7) for NETLINK_ROUTE.

       Standard flag bits in nlmsg_flags
       ----------------------------------------------------------
       NLM_F_REQUEST   Must be set on all request messages.
       NLM_F_MULTI     The message is part of a  multipart  mes-
		       sage terminated by NLMSG_DONE.
       NLM_F_ACK       Request for an acknowledgment on success.
       NLM_F_ECHO      Echo this request.

       Additional flag bits for GET requests
       --------------------------------------------------------------------
       NLM_F_ROOT     Return the complete table instead of a single entry.
       NLM_F_MATCH    Return all entries matching criteria passed in mes-
		      sage content.  Not implemented yet.
       NLM_F_ATOMIC   Return an atomic snapshot of the table.
       NLM_F_DUMP     Convenience macro; equivalent to
		      (NLM_F_ROOT|NLM_F_MATCH).

       Note that NLM_F_ATOMIC requires the CAP_NET_ADMIN capability or an effective UID of 0.

       Additional flag bits for NEW requests
       ------------------------------------------------------------
       NLM_F_REPLACE   Replace existing matching object.
       NLM_F_EXCL      Don't replace if the object already exists.
       NLM_F_CREATE    Create object if it doesn't already exist.
       NLM_F_APPEND    Add to the end of the object list.

       nlmsg_seq  and  nlmsg_pid  are  used to track messages.	nlmsg_pid shows the origin of the
       message.  Note that there isn't a 1:1 relationship between nlmsg_pid and the  PID  of  the
       process	if the message originated from a netlink socket.  See the ADDRESS FORMATS section
       for further information.

       Both nlmsg_seq and nlmsg_pid are opaque to netlink core.

       Netlink is not a reliable protocol.  It tries its best to deliver a message to its  desti-
       nation(s),  but	may  drop messages when an out-of-memory condition or other error occurs.
       For reliable transfer the sender can request an acknowledgement from the receiver by  set-
       ting  the NLM_F_ACK flag.  An acknowledgment is an NLMSG_ERROR packet with the error field
       set to 0.  The application must generate acknowledgements for  received	messages  itself.
       The  kernel  tries to send an NLMSG_ERROR message for every failed packet.  A user process
       should follow this convention too.

       However, reliable transmissions from kernel to user are impossible in any case.	The  ker-
       nel can't send a netlink message if the socket buffer is full: the message will be dropped
       and the kernel and the user-space process will no longer have  the  same  view  of  kernel
       state.	It  is	up  to the application to detect when this happens (via the ENOBUFS error
       returned by recvmsg(2)) and resynchronize.

   Address formats
       The sockaddr_nl structure describes a netlink client in user space or in  the  kernel.	A
       sockaddr_nl  can  be  either  unicast (only sent to one peer) or sent to netlink multicast
       groups (nl_groups not equal 0).

	   struct sockaddr_nl {
	       sa_family_t     nl_family;  /* AF_NETLINK */
	       unsigned short  nl_pad;	   /* Zero. */
	       pid_t	       nl_pid;	   /* Port ID. */
	       __u32	       nl_groups;  /* Multicast groups mask. */
	   };

       nl_pid is the unicast address of netlink socket.  It's always 0 if the destination  is  in
       the kernel.  For a user-space process, nl_pid is usually the PID of the process owning the
       destination socket.  However, nl_pid identifies a netlink socket, not  a  process.   If	a
       process	owns several netlink sockets, then nl_pid can be equal to the process ID only for
       at most one socket.  There are two ways to assign nl_pid to  a  netlink	socket.   If  the
       application  sets  nl_pid before calling bind(2), then it is up to the application to make
       sure that nl_pid is unique.  If the application sets it to 0, the  kernel  takes  care  of
       assigning  it.	The kernel assigns the process ID to the first netlink socket the process
       opens and assigns a unique nl_pid to every netlink socket that  the  process  subsequently
       creates.

       nl_groups  is a bit mask with every bit representing a netlink group number.  Each netlink
       family has a set of 32 multicast groups.  When  bind(2)	is  called  on	the  socket,  the
       nl_groups  field  in  the  sockaddr_nl  should be set to a bit mask of the groups which it
       wishes to listen to.  The default value for this field is zero which means that no  multi-
       casts will be received.	A socket may multicast messages to any of the multicast groups by
       setting nl_groups to a bit mask of  the	groups	it  wishes  to	send  to  when	it  calls
       sendmsg(2)  or  does  a	connect(2).   Only  processes  with  an effective UID of 0 or the
       CAP_NET_ADMIN capability may send or listen to a netlink  multicast  group.   Since  Linux
       2.6.13, messages can't be broadcast to multiple groups.	Any replies to a message received
       for a multicast group should be sent back to the sending  PID  and  the	multicast  group.
       Some  Linux  kernel  subsystems	may additionally allow other users to send and/or receive
       messages.  As at Linux 3.0, the	NETLINK_KOBJECT_UEVENT,  NETLINK_GENERIC,  NETLINK_ROUTE,
       and  NETLINK_SELINUX  groups allow other users to receive messages.  No groups allow other
       users to send messages.

VERSIONS
       The socket interface to netlink is a new feature of Linux 2.2.

       Linux 2.0 supported a more primitive device-based netlink interface (which is still avail-
       able as a compatibility option).  This obsolete interface is not described here.

       NETLINK_SELINUX appeared in Linux 2.6.4.

       NETLINK_AUDIT appeared in Linux 2.6.6.

       NETLINK_KOBJECT_UEVENT appeared in Linux 2.6.10.

       NETLINK_W1 and NETLINK_FIB_LOOKUP appeared in Linux 2.6.13.

       NETLINK_INET_DIAG, NETLINK_CONNECTOR and NETLINK_NETFILTER appeared in Linux 2.6.14.

       NETLINK_GENERIC and NETLINK_ISCSI appeared in Linux 2.6.15.

NOTES
       It  is  often  better to use netlink via libnetlink or libnl than via the low-level kernel
       interface.

BUGS
       This manual page is not complete.

EXAMPLE
       The following example creates a NETLINK_ROUTE netlink socket which will listen to the RTM-
       GRP_LINK  (network  interface  create/delete/up/down  events) and RTMGRP_IPV4_IFADDR (IPv4
       addresses add/delete events) multicast groups.

	   struct sockaddr_nl sa;

	   memset(&sa, 0, sizeof(sa));
	   sa.nl_family = AF_NETLINK;
	   sa.nl_groups = RTMGRP_LINK | RTMGRP_IPV4_IFADDR;

	   fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
	   bind(fd, (struct sockaddr *) &sa, sizeof(sa));

       The next example demonstrates how to send a netlink message to the kernel (pid  0).   Note
       that  application  must	take  care of message sequence numbers in order to reliably track
       acknowledgements.

	   struct nlmsghdr *nh;    /* The nlmsghdr with payload to send. */
	   struct sockaddr_nl sa;
	   struct iovec iov = { nh, nh->nlmsg_len };
	   struct msghdr msg;

	   msg = { &sa, sizeof(sa), &iov, 1, NULL, 0, 0 };
	   memset(&sa, 0, sizeof(sa));
	   sa.nl_family = AF_NETLINK;
	   nh->nlmsg_pid = 0;
	   nh->nlmsg_seq = ++sequence_number;
	   /* Request an ack from kernel by setting NLM_F_ACK. */
	   nh->nlmsg_flags |= NLM_F_ACK;

	   sendmsg(fd, &msg, 0);

       And the last example is about reading netlink message.

	   int len;
	   char buf[4096];
	   struct iovec iov = { buf, sizeof(buf) };
	   struct sockaddr_nl sa;
	   struct msghdr msg;
	   struct nlmsghdr *nh;

	   msg = { &sa, sizeof(sa), &iov, 1, NULL, 0, 0 };
	   len = recvmsg(fd, &msg, 0);

	   for (nh = (struct nlmsghdr *) buf; NLMSG_OK (nh, len);
		nh = NLMSG_NEXT (nh, len)) {
	       /* The end of multipart message. */
	       if (nh->nlmsg_type == NLMSG_DONE)
		   return;

	       if (nh->nlmsg_type == NLMSG_ERROR)
		   /* Do some error handling. */
	       ...

	       /* Continue with parsing payload. */
	       ...
	   }

SEE ALSO
       cmsg(3), netlink(3), capabilities(7), rtnetlink(7)

       information about libnetlink <ftp://ftp.inr.ac.ru/ip-routing/iproute2*>

       information about libnl <http://people.suug.ch/~tgr/libnl/>

       RFC 3549 "Linux Netlink as an IP Services Protocol"

COLOPHON
       This page is part of release 3.55 of the Linux man-pages project.  A  description  of  the
       project,     and    information	  about    reporting	bugs,	 can	be    found    at
       http://www.kernel.org/doc/man-pages/.

Linux					    2013-03-15				       NETLINK(7)


All times are GMT -4. The time now is 10:28 AM.

Unix & Linux Forums Content Copyrightę1993-2018. All Rights Reserved.
×
UNIX.COM Login
Username:
Password:  
Show Password