Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

ztpqrt2.f(3) [debian man page]

ztpqrt2.f(3)							      LAPACK							      ztpqrt2.f(3)

NAME
ztpqrt2.f - SYNOPSIS
Functions/Subroutines subroutine ztpqrt2 (M, N, L, A, LDA, B, LDB, T, LDT, INFO) ZTPQRT2 Function/Subroutine Documentation subroutine ztpqrt2 (integerM, integerN, integerL, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( ldb, * )B, integerLDB, complex*16, dimension( ldt, * )T, integerLDT, integerINFO) ZTPQRT2 Purpose: ZTPQRT2 computes a QR factorization of a complex "triangular-pentagonal" matrix C, which is composed of a triangular block A and pentagonal block B, using the compact WY representation for Q. Parameters: M M is INTEGER The total number of rows of the matrix B. M >= 0. N N is INTEGER The number of columns of the matrix B, and the order of the triangular matrix A. N >= 0. L L is INTEGER The number of rows of the upper trapezoidal part of B. MIN(M,N) >= L >= 0. See Further Details. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the upper triangular N-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the upper triangular matrix R. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). B B is COMPLEX*16 array, dimension (LDB,N) On entry, the pentagonal M-by-N matrix B. The first M-L rows are rectangular, and the last L rows are upper trapezoidal. On exit, B contains the pentagonal matrix V. See Further Details. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,M). T T is COMPLEX*16 array, dimension (LDT,N) The N-by-N upper triangular factor T of the block reflector. See Further Details. LDT LDT is INTEGER The leading dimension of the array T. LDT >= max(1,N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: April 2012 Further Details: The input matrix C is a (N+M)-by-N matrix C = [ A ] [ B ] where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N upper trapezoidal matrix B2: B = [ B1 ] <- (M-L)-by-N rectangular [ B2 ] <- L-by-N upper trapezoidal. The upper trapezoidal matrix B2 consists of the first L rows of a N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N). If L=0, B is rectangular M-by-N; if M=L=N, B is upper triangular. The matrix W stores the elementary reflectors H(i) in the i-th column below the diagonal (of A) in the (N+M)-by-N input matrix C C = [ A ] <- upper triangular N-by-N [ B ] <- M-by-N pentagonal so that W can be represented as W = [ I ] <- identity, N-by-N [ V ] <- M-by-N, same form as B. Thus, all of information needed for W is contained on exit in B, which we call V above. Note that V has the same form as B; that is, V = [ V1 ] <- (M-L)-by-N rectangular [ V2 ] <- L-by-N upper trapezoidal. The columns of V represent the vectors which define the H(i)'s. The (M+N)-by-(M+N) block reflector H is then given by H = I - W * T * W**H where W**H is the conjugate transpose of W and T is the upper triangular factor of the block reflector. Definition at line 174 of file ztpqrt2.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 ztpqrt2.f(3)
Man Page