Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

cgeql2.f(3) [debian man page]

cgeql2.f(3)							      LAPACK							       cgeql2.f(3)

NAME
cgeql2.f - SYNOPSIS
Functions/Subroutines subroutine cgeql2 (M, N, A, LDA, TAU, WORK, INFO) CGEQL2 Function/Subroutine Documentation subroutine cgeql2 (integerM, integerN, complex, dimension( lda, * )A, integerLDA, complex, dimension( * )TAU, complex, dimension( * )WORK, integerINFO) CGEQL2 Purpose: CGEQL2 computes a QL factorization of a complex m by n matrix A: A = Q * L. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is COMPLEX array, dimension (LDA,N) On entry, the m by n matrix A. On exit, if m >= n, the lower triangle of the subarray A(m-n+1:m,1:n) contains the n by n lower triangular matrix L; if m <= n, the elements on and below the (n-m)-th superdiagonal contain the m by n lower trapezoidal matrix L; the remaining elements, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is COMPLEX array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(k) . . . H(2) H(1), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i). Definition at line 124 of file cgeql2.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 cgeql2.f(3)

Check Out this Related Man Page

zgeql2.f(3)							      LAPACK							       zgeql2.f(3)

NAME
zgeql2.f - SYNOPSIS
Functions/Subroutines subroutine zgeql2 (M, N, A, LDA, TAU, WORK, INFO) ZGEQL2 Function/Subroutine Documentation subroutine zgeql2 (integerM, integerN, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( * )TAU, complex*16, dimension( * )WORK, integerINFO) ZGEQL2 Purpose: ZGEQL2 computes a QL factorization of a complex m by n matrix A: A = Q * L. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the m by n matrix A. On exit, if m >= n, the lower triangle of the subarray A(m-n+1:m,1:n) contains the n by n lower triangular matrix L; if m <= n, the elements on and below the (n-m)-th superdiagonal contain the m by n lower trapezoidal matrix L; the remaining elements, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is COMPLEX*16 array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(k) . . . H(2) H(1), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i). Definition at line 124 of file zgeql2.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 zgeql2.f(3)
Man Page