Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

g_dielectric(1) [debian man page]

g_dielectric(1) 				 GROMACS suite, VERSION 4.5.4-dev-20110404-bc5695c				   g_dielectric(1)

NAME
g_dielectric - calculates frequency dependent dielectric constants VERSION 4.5.4-dev-20110404-bc5695c SYNOPSIS
g_dielectric -f dipcorr.xvg -d deriv.xvg -o epsw.xvg -c cole.xvg -[no]h -[no]version -nice int -b time -e time -dt time -[no]w -xvg enum -[no]fft -[no]x1 -eint real -bfit real -efit real -tail real -A real -tau1 real -tau2 real -eps0 real -epsRF real -fix int -ffn enum -nsmooth int DESCRIPTION
g_dielectric calculates frequency dependent dielectric constants from the autocorrelation function of the total dipole moment in your sim- ulation. This ACF can be generated by g_dipoles. For an estimate of the error you can run g_statistics on the ACF, and use the output thus generated for this program. The functional forms of the available functions are: One parameter: y = Exp[-a1 x], Two parameters: y = a2 Exp[-a1 x], Three parameters: y = a2 Exp[-a1 x] + (1 - a2) Exp[-a3 x]. Start values for the fit procedure can be given on the command line. It is also possible to fix parameters at their start value, use -fix with the number of the parameter you want to fix. Three output files are generated, the first contains the ACF, an exponential fit to it with 1, 2 or 3 parameters, and the numerical deriva- tive of the combination data/fit. The second file contains the real and imaginary parts of the frequency-dependent dielectric constant, the last gives a plot known as the Cole-Cole plot, in which the imaginary component is plotted as a function of the real component. For a pure exponential relaxation (Debye relaxation) the latter plot should be one half of a circle. FILES
-f dipcorr.xvg Input xvgr/xmgr file -d deriv.xvg Output xvgr/xmgr file -o epsw.xvg Output xvgr/xmgr file -c cole.xvg Output xvgr/xmgr file OTHER OPTIONS
-[no]hno Print help info and quit -[no]versionno Print version info and quit -nice int 19 Set the nicelevel -b time 0 First frame (ps) to read from trajectory -e time 0 Last frame (ps) to read from trajectory -dt time 0 Only use frame when t MOD dt = first time (ps) -[no]wno View output .xvg, .xpm, .eps and .pdb files -xvg enum xmgrace xvg plot formatting: xmgrace, xmgr or none -[no]fftno use fast fourier transform for correlation function -[no]x1yes use first column as x-axis rather than first data set -eint real 5 Time to end the integration of the data and start to use the fit -bfit real 5 Begin time of fit -efit real 500 End time of fit -tail real 500 Length of function including data and tail from fit -A real 0.5 Start value for fit parameter A -tau1 real 10 Start value for fit parameter tau1 -tau2 real 1 Start value for fit parameter tau2 -eps0 real 80 epsilon0 of your liquid -epsRF real 78.5 epsilon of the reaction field used in your simulation. A value of 0 means infinity. -fix int 0 Fix parameters at their start values, A (2), tau1 (1), or tau2 (4) -ffn enum none Fit function: none, exp, aexp, exp_exp, vac, exp5, exp7, exp9 or erffit -nsmooth int 3 Number of points for smoothing SEE ALSO
gromacs(7) More information about GROMACS is available at <http://www.gromacs.org/>. Mon 4 Apr 2011 g_dielectric(1)

Check Out this Related Man Page

g_potential(1)					 GROMACS suite, VERSION 4.5.4-dev-20110404-bc5695c				    g_potential(1)

NAME
g_potential - calculates the electrostatic potential across the box VERSION 4.5.4-dev-20110404-bc5695c SYNOPSIS
g_potential -f traj.xtc -n index.ndx -s topol.tpr -o potential.xvg -oc charge.xvg -of field.xvg -[no]h -[no]version -nice int -b time -e time -dt time -[no]w -xvg enum -d string -sl int -cb int -ce int -tz real -[no]spherical -ng int -[no]correct DESCRIPTION
g_potential computes the electrostatical potential across the box. The potential is calculated by first summing the charges per slice and then integrating twice of this charge distribution. Periodic boundaries are not taken into account. Reference of potential is taken to be the left side of the box. It is also possible to calculate the potential in spherical coordinates as function of r by calculating a charge distribution in spherical slices and twice integrating them. epsilon_r is taken as 1, but 2 is more appropriate in many cases. FILES
-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt -n index.ndx Input Index file -s topol.tpr Input Run input file: tpr tpb tpa -o potential.xvg Output xvgr/xmgr file -oc charge.xvg Output xvgr/xmgr file -of field.xvg Output xvgr/xmgr file OTHER OPTIONS
-[no]hno Print help info and quit -[no]versionno Print version info and quit -nice int 19 Set the nicelevel -b time 0 First frame (ps) to read from trajectory -e time 0 Last frame (ps) to read from trajectory -dt time 0 Only use frame when t MOD dt = first time (ps) -[no]wno View output .xvg, .xpm, .eps and .pdb files -xvg enum xmgrace xvg plot formatting: xmgrace, xmgr or none -d string Z Take the normal on the membrane in direction X, Y or Z. -sl int 10 Calculate potential as function of boxlength, dividing the box in nr slices. -cb int 0 Discard first nr slices of box for integration -ce int 0 Discard last nr slices of box for integration -tz real 0 Translate all coordinates distance in the direction of the box -[no]sphericalno Calculate spherical thingie -ng int 1 Number of groups to consider -[no]correctno Assume net zero charge of groups to improve accuracy KNOWN PROBLEMS
- Discarding slices for integration should not be necessary. SEE ALSO
gromacs(7) More information about GROMACS is available at <http://www.gromacs.org/>. Mon 4 Apr 2011 g_potential(1)
Man Page