Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

sgbtf2.f(3) [centos man page]

sgbtf2.f(3)							      LAPACK							       sgbtf2.f(3)

NAME
sgbtf2.f - SYNOPSIS
Functions/Subroutines subroutine sgbtf2 (M, N, KL, KU, AB, LDAB, IPIV, INFO) SGBTF2 computes the LU factorization of a general band matrix using the unblocked version of the algorithm. Function/Subroutine Documentation subroutine sgbtf2 (integerM, integerN, integerKL, integerKU, real, dimension( ldab, * )AB, integerLDAB, integer, dimension( * )IPIV, integerINFO) SGBTF2 computes the LU factorization of a general band matrix using the unblocked version of the algorithm. Purpose: SGBTF2 computes an LU factorization of a real m-by-n band matrix A using partial pivoting with row interchanges. This is the unblocked version of the algorithm, calling Level 2 BLAS. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. KL KL is INTEGER The number of subdiagonals within the band of A. KL >= 0. KU KU is INTEGER The number of superdiagonals within the band of A. KU >= 0. AB AB is REAL array, dimension (LDAB,N) On entry, the matrix A in band storage, in rows KL+1 to 2*KL+KU+1; rows 1 to KL of the array need not be set. The j-th column of A is stored in the j-th column of the array AB as follows: AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl) On exit, details of the factorization: U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1. See below for further details. LDAB LDAB is INTEGER The leading dimension of the array AB. LDAB >= 2*KL+KU+1. IPIV IPIV is INTEGER array, dimension (min(M,N)) The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = +i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Further Details: The band storage scheme is illustrated by the following example, when M = N = 6, KL = 2, KU = 1: On entry: On exit: * * * + + + * * * u14 u25 u36 * * + + + + * * u13 u24 u35 u46 * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * a31 a42 a53 a64 * * m31 m42 m53 m64 * * Array elements marked * are not used by the routine; elements marked + need not be set on entry, but are required by the routine to store elements of U, because of fill-in resulting from the row interchanges. Definition at line 146 of file sgbtf2.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 sgbtf2.f(3)

Check Out this Related Man Page

cgbtf2.f(3)							      LAPACK							       cgbtf2.f(3)

NAME
cgbtf2.f - SYNOPSIS
Functions/Subroutines subroutine cgbtf2 (M, N, KL, KU, AB, LDAB, IPIV, INFO) CGBTF2 computes the LU factorization of a general band matrix using the unblocked version of the algorithm. Function/Subroutine Documentation subroutine cgbtf2 (integerM, integerN, integerKL, integerKU, complex, dimension( ldab, * )AB, integerLDAB, integer, dimension( * )IPIV, integerINFO) CGBTF2 computes the LU factorization of a general band matrix using the unblocked version of the algorithm. Purpose: CGBTF2 computes an LU factorization of a complex m-by-n band matrix A using partial pivoting with row interchanges. This is the unblocked version of the algorithm, calling Level 2 BLAS. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. KL KL is INTEGER The number of subdiagonals within the band of A. KL >= 0. KU KU is INTEGER The number of superdiagonals within the band of A. KU >= 0. AB AB is COMPLEX array, dimension (LDAB,N) On entry, the matrix A in band storage, in rows KL+1 to 2*KL+KU+1; rows 1 to KL of the array need not be set. The j-th column of A is stored in the j-th column of the array AB as follows: AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl) On exit, details of the factorization: U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1. See below for further details. LDAB LDAB is INTEGER The leading dimension of the array AB. LDAB >= 2*KL+KU+1. IPIV IPIV is INTEGER array, dimension (min(M,N)) The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = +i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Further Details: The band storage scheme is illustrated by the following example, when M = N = 6, KL = 2, KU = 1: On entry: On exit: * * * + + + * * * u14 u25 u36 * * + + + + * * u13 u24 u35 u46 * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * a31 a42 a53 a64 * * m31 m42 m53 m64 * * Array elements marked * are not used by the routine; elements marked + need not be set on entry, but are required by the routine to store elements of U, because of fill-in resulting from the row interchanges. Definition at line 146 of file cgbtf2.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 cgbtf2.f(3)
Man Page