Linux & Unix Commands - Search Man Pages

dgeqpf.f(3) LAPACK dgeqpf.f(3)NAMEdgeqpf.f-SYNOPSISFunctions/Subroutines subroutine dgeqpf (M, N, A, LDA, JPVT, TAU, WORK, INFO) DGEQPFFunction/Subroutine Documentation subroutine dgeqpf (integerM, integerN, double precision, dimension( lda, * )A, integerLDA, integer, dimension( * )JPVT, double precision, dimension( * )TAU, double precision, dimension( * )WORK, integerINFO) DGEQPF Purpose: This routine is deprecated and has been replaced by routine DGEQP3. DGEQPF computes a QR factorization with column pivoting of a real M-by-N matrix A: A*P = Q*R. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0 A A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper triangular matrix R; the elements below the diagonal, together with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). JPVT JPVT is INTEGER array, dimension (N) On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted to the front of A*P (a leading column); if JPVT(i) = 0, the i-th column of A is a free column. On exit, if JPVT(i) = k, then the i-th column of A*P was the k-th column of A. TAU TAU is DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors. WORK WORK is DOUBLE PRECISION array, dimension (3*N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO =, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(n) Each H(i) has the form H = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). The matrix P is represented in jpvt as follows: If jpvt(j) = i then the jth column of P is the ith canonical unit vector. Partial column norm updating strategy modified by Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.-iApril 2011--For more details see LAPACK Working Note 176. Definition at line 143 of file dgeqpf.f.--AuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 dgeqpf.f(3)

All times are GMT -4. The time now is 03:45 PM.