Sponsored Content
Full Discussion: RAID 0 on Unix
Operating Systems HP-UX RAID 0 on Unix Post 93854 by Perderabo on Thursday 22nd of December 2005 03:25:38 PM
Old 12-22-2005
Um,
raid 0 is striping (no redundancy)
raid 1 is mirroring
 

9 More Discussions You Might Find Interesting

1. UNIX for Dummies Questions & Answers

RAID Unix command

Is there a command used to determine whether or not a machine has been RAIDed besides using 'df -k'. I am interested b/c I am writing a script where I would like to receive some sort of notification as to whether or not a machine has been RAIDed. The simpler the info returned back, the better. ... (2 Replies)
Discussion started by: zuinc
2 Replies

2. UNIX for Advanced & Expert Users

Unix Sco 5.0.7 Raid Problems

Hello there guys , I have this problem , i have this hp smart array 641 raid card and i'm trying to install sco unix 5.0.7 and is says no root disk found right before the instalation is about to start. I know that you have to load the driver befor the install bud i really cannot find the... (0 Replies)
Discussion started by: josramon
0 Replies

3. UNIX for Dummies Questions & Answers

How to view Drive/RAID config in UNIX...

How do you view Drive/RAID configuration in UNIX? We are running an ML370 with 6 drives in it... Version: Sco 5.2.0 Sco Openserver Release 5 (2 Replies)
Discussion started by: bpoulson
2 Replies

4. SCO

raid 1 configuration in sco open unix

Dear Team , how i can configure raid 1 (mirroring) using ide hdd in sco open unix 5 i have two 80gb identical hdd (same make/model) thanx (0 Replies)
Discussion started by: sudhir69
0 Replies

5. Filesystems, Disks and Memory

Help finding a Unix friendly RAID 1 backup

First time poster and a very new Unix user, so I'll just pre-apologize for stupid questions now. Does anybody know of a good RAID 1 hard drive backup that is Unix friendly? I want to avoid any hardcore programming. Can you recommend both NAS and non-NAS options? I need to do nightly backups... (31 Replies)
Discussion started by: c.wakeman
31 Replies

6. AIX

SCSI PCI - X RAID Controller card RAID 5 AIX Disks disappeared

Hello, I have a scsi pci x raid controller card on which I had created a disk array of 3 disks when I type lspv ; I used to see 3 physical disks ( two local disks and one raid 5 disk ) suddenly the raid 5 disk array disappeared ; so the hardware engineer thought the problem was with SCSI... (0 Replies)
Discussion started by: filosophizer
0 Replies

7. HP-UX

Hardware RAID in HP Unix rp3440

Hi Gurus, Can anyone tell me the Hardware RAID configuration in HP Unix rp3440 model server containing HP UX B.11.11 OS version. Thanks in Advance. BR, Prasanth (3 Replies)
Discussion started by: prasanth438
3 Replies

8. Red Hat

RAID Configuration for IBM Serveraid-7k SCSI RAID Controller

Hello, I want to delete a RAID configuration an old server has. Since i haven't the chance to work with the specific raid controller in the past can you please help me how to perform the configuraiton? I downloaded IBM ServeRAID Support CD but i wasn't able to configure the video card so i... (0 Replies)
Discussion started by: @dagio
0 Replies

9. SCO

Backup/RAID of HD on Old UNIX Server

I need to be able to make a backup image of an OLD UNIX server HD where I can restore the complete HD from scratch if (when) the HD fails. This server runs the accounting system for a company. I can and have backed the data up via local FTP, but O/S and Apps are so old that I am not sure I could... (21 Replies)
Discussion started by: chrishouse
21 Replies
RAID(4) 						   BSD Kernel Interfaces Manual 						   RAID(4)

NAME
raid -- RAIDframe disk driver SYNOPSIS
options RAID_AUTOCONFIG options RAID_DIAGNOSTIC options RF_ACC_TRACE=n options RF_DEBUG_MAP=n options RF_DEBUG_PSS=n options RF_DEBUG_QUEUE=n options RF_DEBUG_QUIESCE=n options RF_DEBUG_RECON=n options RF_DEBUG_STRIPELOCK=n options RF_DEBUG_VALIDATE_DAG=n options RF_DEBUG_VERIFYPARITY=n options RF_INCLUDE_CHAINDECLUSTER=n options RF_INCLUDE_EVENODD=n options RF_INCLUDE_INTERDECLUSTER=n options RF_INCLUDE_PARITY_DECLUSTERING=n options RF_INCLUDE_PARITY_DECLUSTERING_DS=n options RF_INCLUDE_PARITYLOGGING=n options RF_INCLUDE_RAID5_RS=n pseudo-device raid [count] DESCRIPTION
The raid driver provides RAID 0, 1, 4, and 5 (and more!) capabilities to NetBSD. This document assumes that the reader has at least some familiarity with RAID and RAID concepts. The reader is also assumed to know how to configure disks and pseudo-devices into kernels, how to generate kernels, and how to partition disks. RAIDframe provides a number of different RAID levels including: RAID 0 provides simple data striping across the components. RAID 1 provides mirroring. RAID 4 provides data striping across the components, with parity stored on a dedicated drive (in this case, the last component). RAID 5 provides data striping across the components, with parity distributed across all the components. There are a wide variety of other RAID levels supported by RAIDframe. The configuration file options to enable them are briefly outlined at the end of this section. Depending on the parity level configured, the device driver can support the failure of component drives. The number of failures allowed depends on the parity level selected. If the driver is able to handle drive failures, and a drive does fail, then the system is operating in "degraded mode". In this mode, all missing data must be reconstructed from the data and parity present on the other components. This results in much slower data accesses, but does mean that a failure need not bring the system to a complete halt. The RAID driver supports and enforces the use of 'component labels'. A 'component label' contains important information about the component, including a user-specified serial number, the row and column of that component in the RAID set, and whether the data (and parity) on the com- ponent is 'clean'. The component label currently lives at the half-way point of the 'reserved section' located at the beginning of each com- ponent. This 'reserved section' is RF_PROTECTED_SECTORS in length (64 blocks or 32Kbytes) and the component label is currently 1Kbyte in size. If the driver determines that the component labels are very inconsistent with respect to each other (e.g. two or more serial numbers do not match) or that the component label is not consistent with its assigned place in the set (e.g. the component label claims the component should be the 3rd one in a 6-disk set, but the RAID set has it as the 3rd component in a 5-disk set) then the device will fail to configure. If the driver determines that exactly one component label seems to be incorrect, and the RAID set is being configured as a set that supports a sin- gle failure, then the RAID set will be allowed to configure, but the incorrectly labeled component will be marked as 'failed', and the RAID set will begin operation in degraded mode. If all of the components are consistent among themselves, the RAID set will configure normally. Component labels are also used to support the auto-detection and autoconfiguration of RAID sets. A RAID set can be flagged as autoconfig- urable, in which case it will be configured automatically during the kernel boot process. RAID file systems which are automatically config- ured are also eligible to be the root file system. There is currently only limited support (alpha, amd64, i386, pmax, sparc, sparc64, and vax architectures) for booting a kernel directly from a RAID 1 set, and no support for booting from any other RAID sets. To use a RAID set as the root file system, a kernel is usually obtained from a small non-RAID partition, after which any autoconfiguring RAID set can be used for the root file system. See raidctl(8) for more information on autoconfiguration of RAID sets. Note that with autoconfiguration of RAID sets, it is no longer necessary to hard-code SCSI IDs of drives. The autoconfiguration code will correctly configure a device even after any number of the components have had their device IDs changed or device names changed. The driver supports 'hot spares', disks which are on-line, but are not actively used in an existing file system. Should a disk fail, the driver is capable of reconstructing the failed disk onto a hot spare or back onto a replacement drive. If the components are hot swappable, the failed disk can then be removed, a new disk put in its place, and a copyback operation performed. The copyback operation, as its name indicates, will copy the reconstructed data from the hot spare to the previously failed (and now replaced) disk. Hot spares can also be hot- added using raidctl(8). If a component cannot be detected when the RAID device is configured, that component will be simply marked as 'failed'. The user-land utility for doing all raid configuration and other operations is raidctl(8). Most importantly, raidctl(8) must be used with the -i option to initialize all RAID sets. In particular, this initialization includes re-building the parity data. This rebuilding of par- ity data is also required when either a) a new RAID device is brought up for the first time or b) after an un-clean shutdown of a RAID device. By using the -P option to raidctl(8), and performing this on-demand recomputation of all parity before doing a fsck(8) or a newfs(8), file system integrity and parity integrity can be ensured. It bears repeating again that parity recomputation is required before any file systems are created or used on the RAID device. If the parity is not correct, then missing data cannot be correctly recovered. RAID levels may be combined in a hierarchical fashion. For example, a RAID 0 device can be constructed out of a number of RAID 5 devices (which, in turn, may be constructed out of the physical disks, or of other RAID devices). The first step to using the raid driver is to ensure that it is suitably configured in the kernel. This is done by adding a line similar to: pseudo-device raid 4 # RAIDframe disk device to the kernel configuration file. The 'count' argument ('4', in this case), specifies the number of RAIDframe drivers to configure. To turn on component auto-detection and autoconfiguration of RAID sets, simply add: options RAID_AUTOCONFIG to the kernel configuration file. All component partitions must be of the type FS_BSDFFS (e.g. 4.2BSD) or FS_RAID. The use of the latter is strongly encouraged, and is required if autoconfiguration of the RAID set is desired. Since RAIDframe leaves room for disklabels, RAID components can be simply raw disks, or partitions which use an entire disk. A more detailed treatment of actually using a raid device is found in raidctl(8). It is highly recommended that the steps to reconstruct, copyback, and re-compute parity are well understood by the system administrator(s) before a component failure. Doing the wrong thing when a component fails may result in data loss. Additional internal consistency checking can be enabled by specifying: options RAID_DIAGNOSTIC These assertions are disabled by default in order to improve performance. RAIDframe supports an access tracing facility for tracking both requests made and performance of various parts of the RAID systems as the request is processed. To enable this tracing the following option may be specified: options RF_ACC_TRACE=1 For extensive debugging there are a number of kernel options which will aid in performing extra diagnosis of various parts of the RAIDframe sub-systems. Note that in order to make full use of these options it is often necessary to enable one or more debugging options as listed in src/sys/dev/raidframe/rf_options.h. As well, these options are also only typically useful for people who wish to debug various parts of RAIDframe. The options include: For debugging the code which maps RAID addresses to physical addresses: options RF_DEBUG_MAP=1 Parity stripe status debugging is enabled with: options RF_DEBUG_PSS=1 Additional debugging for queuing is enabled with: options RF_DEBUG_QUEUE=1 Problems with non-quiescent file systems should be easier to debug if the following is enabled: options RF_DEBUG_QUIESCE=1 Stripelock debugging is enabled with: options RF_DEBUG_STRIPELOCK=1 Additional diagnostic checks during reconstruction are enabled with: options RF_DEBUG_RECON=1 Validation of the DAGs (Directed Acyclic Graphs) used to describe an I/O access can be performed when the following is enabled: options RF_DEBUG_VALIDATE_DAG=1 Additional diagnostics during parity verification are enabled with: options RF_DEBUG_VERIFYPARITY=1 There are a number of less commonly used RAID levels supported by RAIDframe. These additional RAID types should be considered experimental, and may not be ready for production use. The various types and the options to enable them are shown here: For Even-Odd parity: options RF_INCLUDE_EVENODD=1 For RAID level 5 with rotated sparing: options RF_INCLUDE_RAID5_RS=1 For Parity Logging (highly experimental): options RF_INCLUDE_PARITYLOGGING=1 For Chain Declustering: options RF_INCLUDE_CHAINDECLUSTER=1 For Interleaved Declustering: options RF_INCLUDE_INTERDECLUSTER=1 For Parity Declustering: options RF_INCLUDE_PARITY_DECLUSTERING=1 For Parity Declustering with Distributed Spares: options RF_INCLUDE_PARITY_DECLUSTERING_DS=1 The reader is referred to the RAIDframe documentation mentioned in the HISTORY section for more detail on these various RAID configurations. WARNINGS
Certain RAID levels (1, 4, 5, 6, and others) can protect against some data loss due to component failure. However the loss of two components of a RAID 4 or 5 system, or the loss of a single component of a RAID 0 system, will result in the entire file systems on that RAID device being lost. RAID is NOT a substitute for good backup practices. Recomputation of parity MUST be performed whenever there is a chance that it may have been compromised. This includes after system crashes, or before a RAID device has been used for the first time. Failure to keep parity correct will be catastrophic should a component ever fail -- it is better to use RAID 0 and get the additional space and speed, than it is to use parity, but not keep the parity correct. At least with RAID 0 there is no perception of increased data security. FILES
/dev/{,r}raid* raid device special files. SEE ALSO
config(1), sd(4), fsck(8), MAKEDEV(8), mount(8), newfs(8), raidctl(8) HISTORY
The raid driver in NetBSD is a port of RAIDframe, a framework for rapid prototyping of RAID structures developed by the folks at the Parallel Data Laboratory at Carnegie Mellon University (CMU). RAIDframe, as originally distributed by CMU, provides a RAID simulator for a number of different architectures, and a user-level device driver and a kernel device driver for Digital Unix. The raid driver is a kernelized version of RAIDframe v1.1. A more complete description of the internals and functionality of RAIDframe is found in the paper "RAIDframe: A Rapid Prototyping Tool for RAID Systems", by William V. Courtright II, Garth Gibson, Mark Holland, LeAnn Neal Reilly, and Jim Zelenka, and published by the Parallel Data Laboratory of Carnegie Mellon University. The raid driver first appeared in NetBSD 1.4. COPYRIGHT
The RAIDframe Copyright is as follows: Copyright (c) 1994-1996 Carnegie-Mellon University. All rights reserved. Permission to use, copy, modify and distribute this software and its documentation is hereby granted, provided that both the copyright notice and this permission notice appear in all copies of the software, derivative works or modified versions, and any portions thereof, and that both notices appear in supporting documentation. CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. Carnegie Mellon requests users of this software to return to Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU School of Computer Science Carnegie Mellon University Pittsburgh PA 15213-3890 any improvements or extensions that they make and grant Carnegie the rights to redistribute these changes. BSD
August 6, 2007 BSD
All times are GMT -4. The time now is 09:21 AM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy