Sponsored Content
Special Forums News, Links, Events and Announcements A seriously interesting article about fab times. Post 302998080 by cb88 on Wednesday 24th of May 2017 10:58:36 PM
Old 05-24-2017
That really is a great article, I think one of the ways Intel is going to work around this is multi process chips... so things that aren't as performance intensive are going to be made on older faster cheaper processes, or more optimized processes. So they can make IO optimized drivers for high speed ram interfaces, logic optimized areas for the CPU, and low cost peripheral areas. It is certainly interesting to see companies trying to cope with the limits they are running up against. As well as they can conentrate on making only one sub unit faster per generation... rather than thier tick - tock tock they have been doing. They could do some iteration on aspects of the design without having to worry about parts that won't change getting broken by moving to a new process etc.. .

I've seen some ideas about die stacking of CPU and GPU components instead of chips ram as is done with HBM. So, perhaps they would make tiny very high yeild dies, but stack a bunch of them and run them rather slowly for a higher aggregate speed so they don't fry themselves with heat.

As an aside I've actually seen Daifuku (Wynright is the specific branch I've worked with) equipment installed in several locations where I have been out on an on site setup trip for the equipment my employer makes... very cool cranes (I've seen them shuffling shoe boxes and potato chips) though apparently they shuffle computer chips around as well!

Last edited by cb88; 05-25-2017 at 12:03 AM..
 

4 More Discussions You Might Find Interesting

1. UNIX for Advanced & Expert Users

An interesting problem

hi!, here is an interesting problem ..... I ftp a file named " my first file.doc" from windows to my HP workstation. Ftp is succesful. The file appears with the same name in my home directory.. But now how do I open this file?? while using Vi or More or other editor, they take only the... (5 Replies)
Discussion started by: jyotipg
5 Replies

2. Shell Programming and Scripting

interesting problem

Hi, I am new in this forum and I am glad to be a part of it. I have a problem that has two parts: 1/ extract just the timestamp from a filename: for example, I have a file called 'sales20080226144525.txt' and I want to extract just the '20080226144525' part out of it. 2/ Now, take that... (5 Replies)
Discussion started by: ChicagoBlues
5 Replies

3. AIX

how would you know your server was rebooted 3 times or 5 times

Is there such location or command to know how many times did you reboot your server in that particular day?in AIX. (3 Replies)
Discussion started by: kenshinhimura
3 Replies

4. Programming

Problem with implementing the times() function in C (struct tms times return zero/negative values)

Hello, i'm trying to implement the times() function and i'm programming in C. I'm using the "struct tms" structure which consists of the fields: The tms_utime structure member is the CPU time charged for the execution of user instructions of the calling process. The tms_stime structure... (1 Reply)
Discussion started by: g_p
1 Replies
DBCOOL(4)						   BSD Kernel Interfaces Manual 						 DBCOOL(4)

NAME
dbcool, adm1027, adm1030, adm1031, adt7463, adt7466, adt7467, adt7468, adt7473, adt7475, adt7476, adt7490, emc6d103s -- dbCool(tm) family of environmental monitors and fan controllers SYNOPSIS
dbcool* at ki2c? dbcool* at iic? addr 0x2e DESCRIPTION
The dbcool driver provides support for the Analog Devices dbCool and the SMSC EMC6D103S environmental monitor chips to be used with the envsys(4) API. These chips support up to fifteen sensors. Not all of the following sensors are supported on all chips. Sensor Units Typical Use l_temp uK local chip temperature r1_temp uK CPU temperature r2_temp uK GPU temperature Vccp uV DC CPU Vcore Vcc uV DC Chip's supply voltage 2.5V uV DC 2.5V supply 5V uV DC 5V supply 12V uV DC 12V supply Vtt uV DC PECI ref. voltage (2.25V ref, ADT7490 only) Imon uV DC Current monitor (2.25V ref, ADT7490 only) AIN1 uV DC Analog In (2.25V ref, ADT7466 only) AIN2 uV DC Analog In (2.25V ref, ADT7466 only) fan1 RPM Chassis Fan fan2 RPM Chassis Fan fan3 RPM Chassis Fan fan4 RPM Chassis Fan VID (none) CPU VID code (selected chips only) Each temperature and voltage sensor has programmable hardware high- and low-limits; fan sensors have only a low-limit. These limits can be set using the envstat(8) utility. Due to hardware limitations, the minimum permissible value for the fan speed low-limits is 83 RPM. Temperature sensors also have Tmin, Trange, Thyst, and Ttherm sysctl(8) variables; these values are used by the fan speed controllers. Their values are in units of degC, since this is the unit which is programmed into the device registers. All members of the dbCool family support Pulse-Width Modulated (PWM) fan speed control based on temperature thresholds - the fan will spin up when its associated thermal sensor(s) exceeds its configured Tmin value. The fan will go faster as the temperature rises, and will slow down as the temperature falls. If the temperature exceeds the sensor's Ttherm value, the THERM signal will be asserted, and if enabled the fan will run at full speed. The fan will be turned off when the sensor(s) that triggered it reports a temperature which is at least Thyst degrees below its Tmin threshold. Each fan controller is programmable using the following sysctl(8) variables. hw.dbcool0.fan_ctl_0.behavior hw.dbcool0.fan_ctl_0.min_duty hw.dbcool0.fan_ctl_0.max_duty hw.dbcool0.fan_ctl_0.cur_duty The behavior variable controls the selection of temperature sensors associated with the fan controller. When the associated temperature sen- sor reaches its Tmin value, the fan controller starts the fan at its minimum duty cycle; when the associated temperature sensor reaches its Ttherm value and asserts the THERM signal (or if an external THERM signal is asserted), the fan controller sets the fan speed to a 100% duty cycle. Between these two settings, each temperature sensor is used to calculate a duty cycle linearly based on the slope defined by the tem- perature sensor's range variable. When the associated temperature falls at least Thyst degress below its Tmin value, the fan controller will turn off the fan. (On the ADM1030, the value for Thyst is fixed at 5 degC.) Valid values for the behavior variable are: local (not available on ADM1030) remote1 remote2 (not available on ADM1030) local+remote2 (not available on ADM1030) all-temps full-speed (not available on ADM1030) manual disabled When the behavior variable is set to ``manual'', the cur-duty variable becomes user-writable and can be set to any value between 0 and 100 inclusive to control the fan's duty cycle manually. In all other behavior modes, the cur-duty variable is read-only and updates are ignored. The min-duty and max-duty variables define the range over which the fan controller will manage the fan's duty cycle. On the ADM1030, these values are not separately controllable. The max-duty is fixed at 100%, and the cur-duty variable is used to specify the minimum duty cycle when the fan controller is running in automatic mode. Note that the duty-cycle value does not directly correspond to the fan's speed. That is, a 33% duty cycle does not mean that the fan runs at 33% of its maximum speed; in actuality, a 33% duty cycle drives the fan at a speed close to 50% of its maximum. Fan speed correlates approx- imately to the square root of the duty cycle. EXAMPLES
The envstat(8) utility can be used to determine the sensors supported: Current CritMax WarnMax WarnMin CritMin Unit l_temp: 44.250 degC r1_temp: 41.250 degC r2_temp: N/A Vccp: 0.002 V Vcc: 3.351 V fan1: N/A fan2: N/A fan3: N/A fan4: N/A Using this information, the following commands in /etc/envsys.conf will set appropriate limits for CPU temperature and chip supply voltage, and powerd will be notified if the limits are exceeded: dbcool0 { sensor1 { warning-max = 60C; critical-max = 65C; } sensor4 { critical-min = 3.1; warning-min = 3.2; critical-max = 3.5; } } SEE ALSO
envsys(4), iic(4), envstat(8), powerd(8), sysctl(8) HISTORY
The dbcool device appeared in NetBSD 5.0. BUGS
Although the sensor limit registers can be programmed, there is currently no use of the dbCool chips' ability to generate an SMBus interrupt when the limits are exceeded. Limit checking and event generation are done in software, and are performed only when the sensor values are polled and refreshed. The ADT7466 chip, although officially a member of the dbCool family, is programmed quite differently. The fan controllers on this chip are not currently implemented. The PECI (Processor Environment Control Interface) temperature sensors and the associated PWM behavior modes on the ADT7490 are not currently supported. BSD
March 12, 2011 BSD
All times are GMT -4. The time now is 06:49 AM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy