Sponsored Content
Full Discussion: Pivot Column using awk
Top Forums Shell Programming and Scripting Pivot Column using awk Post 302933019 by RudiC on Tuesday 27th of January 2015 03:49:12 AM
Old 01-27-2015
Try this for a starting point:
Code:
awk     '       {LN[$1]; HD[$2]; MX[$1,$2]=$3}
         END    {               printf "%10s", ""; for (i in HD) printf "%10s", i; print "";
                 for (j in LN) {printf "%10s",j;   for (i in HD) printf "%10s", MX[j,i]; print ""}
                }
        ' FS=, file
                 WCD       AKH       DEF       LMN       XYZ       ABC
      4444       400       500                 100                    
      2222                                                         100
      7777       300                 300                              
      1111                           200                 300       100

This User Gave Thanks to RudiC For This Post:
 

10 More Discussions You Might Find Interesting

1. Shell Programming and Scripting

for each different entry in column 1 extract maximum values from column 2 in unix/awk

Hello, I have 2 columns (1st column has multiple entries but the corresponding values in the column 2 may be the same or different.) however I want to extract unique values for each entry in column 1 by assigning the max value from column 2 SDF4 -0.211654 SDF4 0.978068 ... (1 Reply)
Discussion started by: Diya123
1 Replies

2. Shell Programming and Scripting

Help newbie: transposing column into row (pivot)

Hi, I have a file in this format. Name | organization John | INT Abby| DOM John | DOM John | MIX Jason | INT Anna | DOM Abby |MIX I want the output to look this. Name | organization John | INT, DOM, MIX Abby | DOM, MIX Jason | INT Anna | DOM (5 Replies)
Discussion started by: sirrtuan
5 Replies

3. Shell Programming and Scripting

AWK script to create max value of 3rd column, grouping by first column

Hi, I need an awk script (or whatever shell-construct) that would take data like below and get the max value of 3 column, when grouping by the 1st column. clientname,day-of-month,max-users ----------------------------------- client1,20120610,5 client2,20120610,2 client3,20120610,7... (3 Replies)
Discussion started by: ckmehta
3 Replies

4. Shell Programming and Scripting

awk Print New Column For Every Two Lines and Match On Multiple Column Values to print another column

Hi, My input files is like this axis1 0 1 10 axis2 0 1 5 axis1 1 2 -4 axis2 2 3 -3 axis1 3 4 5 axis2 3 4 -1 axis1 4 5 -6 axis2 4 5 1 Now, these are my following tasks 1. Print a first column for every two rows that has the same value followed by a string. 2. Match on the... (3 Replies)
Discussion started by: jacobs.smith
3 Replies

5. Shell Programming and Scripting

Pivot using awk

Hi, I am writing a code to basically pivot the data. awk -v var1="" -v var2="" -v var3="" -v var4="" -v var5="" -v Disp=0\ 'BEGIN {FS=":"; OFS="|";}\ /^Pattern1/ {var1=$2;Disp=0;} \ /^Pattern2/ {var2=$2;} \ /^Pattern3/ {var3=$2;} \ /^Pattern4/ {var4=$2;} \ /^Pattern5/... (5 Replies)
Discussion started by: tostay2003
5 Replies

6. Shell Programming and Scripting

Problems with awk (fatal error) and paste (two variables into one column-by-column)

Hello, I have a script extracting columns of useful numbers from a data file, and manipulating the numbers with awk commands. I have problems with my script... 1. There are two lines assigning numbers to $BaseForAveraging. If I use the commented line (the first one) and let the second one... (9 Replies)
Discussion started by: vgbraymond
9 Replies

7. Shell Programming and Scripting

Pivot data using awk

Hi My Input is like below DELETE|MPI|AUD_UPD_AGENT|MPISYS INSERT|MPI|AUD_UPD_AGENT|MPISYS SELECT|MPI|AUD_UPD_AGENT|MPISYS UPDATE|MPI|AUD_UPD_AGENT|MPISYS DELETE|MPI|BDYMOD|MPISYS INSERT|MPI|BDYMOD|MPISYS SELECT|MPI|BDYMOD|MPISYS UPDATE|MPI|BDYMOD|MPISYS DELETE|MPI|BDYMOD_DESC|MPISYS... (4 Replies)
Discussion started by: dineshaila
4 Replies

8. Shell Programming and Scripting

Awk- Pivot Table Averages

Hi everyone, Has anyone figured out yet how to do pivot table averages using AWK. I didn't see anything with regards to doing averages. For example, suppose you have the following table with various individuals and their scores in round1 and round2: SAMPLE SCORE1 SCORE2 British ... (6 Replies)
Discussion started by: Geneanalyst
6 Replies

9. Shell Programming and Scripting

awk to Sum columns when other column has duplicates and append one column value to another with Care

Hi Experts, Please bear with me, i need help I am learning AWk and stuck up in one issue. First point : I want to sum up column value for column 7, 9, 11,13 and column15 if rows in column 5 are duplicates.No action to be taken for rows where value in column 5 is unique. Second point : For... (1 Reply)
Discussion started by: as7951
1 Replies

10. Shell Programming and Scripting

awk script to append suffix to column when column has duplicated values

Please help me to get required output for both scenario 1 and scenario 2 and need separate code for both scenario 1 and scenario 2 Scenario 1 i need to do below changes only when column1 is CR and column3 has duplicates rows/values. This inputfile can contain 100 of this duplicated rows of... (1 Reply)
Discussion started by: as7951
1 Replies
pstat_getlocality(2)						System Calls Manual					      pstat_getlocality(2)

NAME
pstat_getlocality(), pstat_getproclocality() - returns system-wide or per-process information of a ccNUMA system SYNOPSIS
DESCRIPTION
and are part of the general functionality provided to obtain information about various system contexts. These calls return information on different parts of a Cache Coherent Non-Uniform Memory Architecture (ccNUMA) system. returns system-wide information, while returns per-process information. A locality is one "building block" of a ccNUMA system. If a machine has only one locality, it is considered to be an UMA (Uniform Memory Architecture) machine. UMA is also a synonym for Symmetric Multiprocessor (SMP). These locality building blocks are nearly identical to the concept of the locality domain (or LDOM) as described in the mpctl(2) manual page. From that manual page: A locality domain consists of a related collection of processors, memory, and peripheral resources that comprise a fundamental building block of the system. All processors and peripheral devices in a given locality domain have equal latency to the memory contained within that locality domain. There is only one difference between a locality and an LDOM, and that is the concept of interleaved memory. Interleaved memory is a hard- ware-constructed region of physical memory that is created from the memory of several locality domains. This memory is striped together with a very fine granularity. As an example, consider a system with four locality domains 0, 1, 2, and 3. Let's say they all contribute the same amount of memory to the interleave. The interleaved memory may look like this (assuming a 64-byte striping): Memory Address Comes From -------------- ---------- 0 - 63 (bytes) LDOM 0 64 - 127 LDOM 1 128 - 191 LDOM 2 192 - 255 LDOM 3 256 - 319 LDOM 0 etc, etc Interleaved memory is a good place to put shared objects, the kernel, and objects that could be accessed from any part of the system. There will be at most one interleaved locality. Some systems may not have interleaved memory. Given the four-LDOM example above, these calls would return five localities - one for each LDOM, and one for interleaved memory. The rea- son that mpctl(2) does not count interleaved memory as an LDOM is because mpctl(2) is used for scheduling purposes, and interleaved memory contains no processors. Function Descriptions Returns system-wide information specific to each locality. There is one instance of this context for each locality on the system. For each locality requested, data, up to a maximum of elem- size bytes, are returned in the pointed to by buf. The elemcount parameter specifies the number of that are available at buf to be filled in. The index parameter specifies the starting index within the context of localities. The types and field members of the are as follows: pst_locality_flags_t psl_flags Contains information about the given locality. See the description of pst_locality_flags_t below for details. int64_t psl_ldom_id This is the LDOM id used by mpctl(2) to identify this locality. For the interleaved locality, this field will be -1. int64_t psl_physical_id A hardware-based number that ties the locality to some recognizable physically indexable entity. An example of this is a cell id number. uint64_t psl_total_pages The total number of physical pages in this locality. uint64_t psl_free_pages The number of free physical pages in this locality at this moment. uint64_t psl_cpus The number of enabled cpus in this locality. This is irrespective of any that may be in effect for those cpus. psl_flags is a bitfield described by the enumerated type pst_locality_flags_t . This field describes some of the properties of the locality. Valid values for pst_locality_flags_t are the following: This locality is the interleaved locality. This locality is not an interleaved locality. It will map to exactly one locality domain returned by the mpctl(2) system call. and are mutually exclusive. This locality does not contribute any physical memory to the interleave. can only be set if is also set. On an UMA system, there will be one locality and will be set in psl_flags. Returns information specific to a particular process' locality behavior. There is one instance of this context for each locality for each process on the system. For each instance requested, data, up to a maximum of elemsize bytes, are returned in the pointed to by buf. At most one instance (locality) is returned for each call to The pid parameter specifies the process id of the process for which locality information is to be returned. A pid of zero indicates that locality information for the currently executing process should be returned. The index parameter specifies the starting index within the context of localities. The types and field members of the are as follows: int64_t ppl_ldom_id This is the LDOM id used by mpctl(2) to identify this locality. For the interleaved locality, this field will be -1. uint64_t ppl_rss_total The total number of resident pages for this process in this locality. uint64_t ppl_rss_shared The number of shared resident pages for this process in this locality. uint64_t ppl_rss_private The number of private resident pages for this process in this locality. uint64_t ppl_rss_weighted The number of resident pages for this process in this locality, weighted by the number of processes sharing each page. Pri- vate pages count as one page, and shared pages count as the page divided by the number of processes sharing that page. Notes These functions only return the wide (64 bit) versions of their associated structures. In order for narrow (32 bit) applications to use these interfaces, the flag must be used at compile time. These interfaces are available for narrow applications written in standard C and extended ANSI, and for all wide applications. RETURN VALUE
and return the following values: Successful completion. n is the number of instances returned in buf . Failure. is set to indicate the error. ERRORS
Upon failure, is set to one of the following values. [EFAULT] buf points to an invalid address. [EINVAL] elemsize is less than or equal to zero, or elemsize is larger than the size of the associated data structure. [EINVAL] index is negative. [ESRCH] for pstat_getproclocality(), the requested pid could not be found. EXAMPLES
/* * This program returns system-wide and per-process memory * locality information. To compile the 32-bit version, * use -D_PSTAT64. The 64-bit version does not need any * special compiler flags. */ #include <unistd.h> #include <stdio.h> #include <sys/param.h> #include <sys/pstat.h> #include <sys/errno.h> #define BURST ((size_t)3) #define STRSZ 80 unsigned long pgsize; void pid_locinfo ( pid_t pid ); void sys_locinfo ( void ); void pages_to_str ( uint64_t pages, char *str ); void usage ( int argc, char **argv ) { fprintf ( stderr, "Usage: %s [-p pid] ", argv[0] ); fprintf ( stderr, "This program prints out per locality " ); fprintf ( stderr, "memory usage. If 'pid' is supplied, " ); fprintf ( stderr, "information on that process is " ); fprintf ( stderr, "returned in addition to system-wide " ); fprintf ( stderr, "information. " ); exit(1); } /* * Verify arguments, call sys_locinfo(), and call pid_locinfo() * if desired. */ int main ( int argc, char **argv ) { pid_t pid = (pid_t) 0; if ( (argc == 2) || (argc > 3) || ((argc == 3) && (strncmp(argv[1], "-p", 2))) ) { usage(argc, argv); } if ( argc == 3 ) { pid = atoi(argv[2]); if (pid < 0) { /* note that pid 0 is "this process" */ usage(argc, argv); } } /* Get the size of a page for later calculations */ pgsize = sysconf ( _SC_PAGE_SIZE ); sys_locinfo(); if ( argc == 3 ) { pid_locinfo ( pid ); } return 0; } /* * Display the system-wide memory usage per locality. */ void sys_locinfo ( void ) { int i; /* index within pstl[] */ int count; /* the actual number of pstl structures */ int idx = 0; /* index within the context of localities */ struct pst_locality pstl[BURST]; char total_str[STRSZ], free_str[STRSZ], used_str[STRSZ]; uint64_t total=0, free=0; printf ( " --- System wide locality info: --- " ); printf ( "%6s%6s%7s%6s%10s%10s%10s ", "index", "ldom", "physid", "type", "total", "free", "used" ); /* Get a maximum of BURST pst_locality structures */ count = pstat_getlocality ( pstl, sizeof(struct pst_locality), BURST, idx ); while ( count > 0 ) { for ( i=0 ; i<count ; i++ ) { /* Keep running totals for later */ total += pstl[i].psl_total_pages; free += pstl[i].psl_free_pages; /* Convert integers into strings */ pages_to_str ( pstl[i].psl_total_pages, total_str ); pages_to_str ( pstl[i].psl_free_pages, free_str ); pages_to_str ( (pstl[i].psl_total_pages - pstl[i].psl_free_pages), used_str ); printf ( "%6d%6lld%7lld%6s%10s%10s%10s ", (idx+i), pstl[i].psl_ldom_id, pstl[i].psl_physical_id, ((pstl[i].psl_flags & PSL_INTERLEAVED) ? "ILV":"CLM"), total_str, free_str, used_str ); } idx += count; /* * Get (at most) the next BURST pst_locality * structures, starting at idx */ count = pstat_getlocality ( pstl, sizeof(struct pst_locality), BURST, idx ); } if ( count < 0 ) { perror ( "pstat_getlocality" ); exit(1); } if ( idx == 1 ) { /* Don't print totals if there's one locality */ printf ( " " ); return; } /* Convert integer totals into strings */ pages_to_str ( total, total_str ); pages_to_str ( free, free_str ); pages_to_str ( total-free, used_str ); /* Print totals */ printf ( "%6s%6s%7s%6s%10s%10s%10s ", "", "", "", "", "-----", "-----", "-----" ); printf ( "%6s%6s%7s%6s%10s%10s%10s ", "", "", "", "", total_str, free_str, used_str ); } /* * Given a pid, display its per-locality physical memory usage. */ void pid_locinfo ( pid_t pid ) { int count, i=0; struct pst_proc_locality ppl; char total_str[STRSZ], shared_str[STRSZ]; char private_str[STRSZ], weighted_str[STRSZ]; uint64_t total=0, shared=0, private=0, weighted=0; /* * With this interface, information on only one locality * can be returned at a time. This will get the first: */ count = pstat_getproclocality ( &ppl, sizeof(struct pst_proc_locality), pid, i ); printf ( " --- Per-process locality info for pid %d: --- ", pid ); printf ( "%6s%10s%10s%10s%10s ", "idx", "total", "shared", "private", "weighted" ); while ( count == 1 ) { total += ppl.ppl_rss_total; shared += ppl.ppl_rss_shared; private += ppl.ppl_rss_private; weighted += ppl.ppl_rss_weighted; pages_to_str ( ppl.ppl_rss_total, total_str ); pages_to_str ( ppl.ppl_rss_shared, shared_str ); pages_to_str ( ppl.ppl_rss_private, private_str ); pages_to_str ( ppl.ppl_rss_weighted, weighted_str ); printf ( "%6d%10s%10s%10s%10s ", i, total_str, shared_str, private_str, weighted_str ); i++; count = pstat_getproclocality ( &ppl, sizeof(struct pst_proc_locality), pid, i ); } if ( count < 0 ) { if ( errno == ESRCH ) { fprintf ( stderr, "Process %d not found ", pid ); exit(1); } perror ( "pstat_getproclocality" ); exit(1); } if ( i == 1 ) { /* Don't print totals if there's one locality */ printf ( " " ); return; } pages_to_str ( total, total_str ); pages_to_str ( shared, shared_str ); pages_to_str ( private, private_str ); pages_to_str ( weighted, weighted_str ); printf ( "%6s%10s%10s%10s%10s ", "", "-----", "-----", "-----", "-----" ); printf ( "%6s%10s%10s%10s%10s ", "", total_str, shared_str, private_str, weighted_str ); } /* * Given a quantity of memory in pages, fill str with a * human-readable string representing that amount. */ void pages_to_str ( uint64_t pages, char *str ) { uint64_t kpg = pages*(pgsize/1024L); uint64_t mpg = kpg/1024L; uint64_t gpg = mpg/1024L; if ( gpg > 10 ) { sprintf ( str, "%lluG", gpg ); } else if ( mpg > 10 ) { sprintf ( str, "%lluM", mpg ); } else if ( kpg > 1 ) { sprintf ( str, "%lluK", kpg ); } else { sprintf ( str, "%llu", pages ); } } AUTHOR
The routines were developed by Hewlett-Packard Company. SEE ALSO
pstat(2), mpctl(2). pstat_getlocality(2)
All times are GMT -4. The time now is 09:21 AM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy