Sponsored Content
Homework and Emergencies Emergency UNIX and Linux Support NIS created users without a home directory Post 302904084 by otheus on Monday 2nd of June 2014 04:47:48 AM
Old 06-02-2014
Do you know for sure that you can mount /home/nisuser on this host?

Try (as root):
Code:
mkdir /mnt/nisuser
chmod 755 /mnt/nisuser
mount titanium:/home/nisuser /mnt/nisuser
ls -l /mnt/nisuser

If it doesn't mount, there's a problem with the server side (check the exports file? Run exportfs -a ? Is NFS service running?)

If it does mount, the problem is apparently with autofs itself.

Last edited by otheus; 06-02-2014 at 05:48 AM.. Reason: mount command fix and ls command fix
 

10 More Discussions You Might Find Interesting

1. UNIX for Dummies Questions & Answers

Profiles for users without home directory

Hi I want to know which profile will be called when a user without home directory is created. When I created a user without home directory(by setting in /etc/default/useradd), the user is able to login directly into the main "/" folder but with only read permissions. Thanks naina (3 Replies)
Discussion started by: naina
3 Replies

2. UNIX for Dummies Questions & Answers

Home Directory Jail for Users

Hi, I am looking for a shell script (or any other way), that puts a user in a home directory jail. So for example, I have a user named richard and I don't want him wandering outside /usr/users/richard. I don't want him to cd to anywhere including cd .. Somebody said you can do that with... (3 Replies)
Discussion started by: mz043
3 Replies

3. UNIX for Advanced & Expert Users

Problem: Automounting Home directory for nis & nfs configuration doesn't work

Hi all, First of all, i am so sorry about my bad level in English writing. I have some problem in linux and i hope the experts of this forum to help me if they have enough time to reply to me. I have a scenario of configuring NIS and NFS in Redhat Linux environment such that user can login... (0 Replies)
Discussion started by: pioneer
0 Replies

4. UNIX for Dummies Questions & Answers

lost /home/directory for users

I'm using HPUX 11i. The other day a user logon to the workstation and was not able to find the /home/directory (tom is the directory) I login myself and it is the same thing. The home directory is on the server, so I was thinking of using sam to map it again. does anyone know how to do it... (5 Replies)
Discussion started by: blizzgamer
5 Replies

5. Solaris

Common Home directory for different users??

Hi Guys, I have a problem with configuring a server. this is a solaris 10 with sparc platform. I have setup so that the server is Authenticating through NIS but I dont want the server to Mount the Home directories. The users need to logged in through the CDE/display. I have over 200 users... (2 Replies)
Discussion started by: Luky
2 Replies

6. UNIX for Advanced & Expert Users

about the access permission of users home directory

RHEL5.0 As we know, when root create a new user, a new home directory will be created : /home/user I want to know what determine the access permission of /home/user . Thanks! (1 Reply)
Discussion started by: cqlouis
1 Replies

7. Red Hat

SSH lock users to the Home Directory

Hi friends, I must to give ssh connection to own customer. So I want to lock ssh user on own home directory. It is not necessery to reach other folders. I know that ftp user can lock on own folder but I don't know how to lock ssh user. I am waitting your kindly helps :D ---------- Post... (10 Replies)
Discussion started by: getrue
10 Replies

8. UNIX for Dummies Questions & Answers

User's home directory not being created

I am trying to create Oracle user. I will install oracle after that. But my problem is /home/oracle directory is not being created. bash-3.2# useradd -g oinstall -G dba,oper -d /home/oracle -m oracle cp: /home/oracle: Operation not applicable chown: /home/oracle: No such file or directory ... (3 Replies)
Discussion started by: hubatuwang
3 Replies

9. UNIX for Advanced & Expert Users

Permissions on a directory in /home for all users

Hi, I have created a shared directory on /home, where all users on a certain group have read, write and execute permissions. I did this using chmod -R g+rwx /home/shared/ The problem is, when a particular user creates a directory within /home/shared, other users are not able to write to... (8 Replies)
Discussion started by: lost.identity
8 Replies

10. HP-UX

How to set variable for users with no home directory?

Hi I need to set $HISTFILE for a user with no home directory. How to go about it because this user does not have a .profilefile. (5 Replies)
Discussion started by: fretagi
5 Replies
CGCONFIG.CONF(5)						File Formats Manual						  CGCONFIG.CONF(5)

NAME
cgconfig.conf - libcgroup configuration file DESCRIPTION
cgconfig.conf is a configuration file used by libcgroup to define control groups, their parameters and their mount points. The file con- sists of mount , group and default sections. These sections can be in arbitrary order and all of them are optional. Any line starting with '#' is considered a comment line and is ignored. mount section has this form: mount { <controller> = <path>; ... } controller Name of the kernel subsystem. The list of subsystems supported by the kernel can be found in /proc/cgroups file. Named hierarchy can be specified as controller "name=<somename>". Do not forget to use double quotes around this controller name (see examples below). Libcgroup merges all subsystems mounted to the same directory (see Example 1) and the directory is mounted only once. path The directory path where the group hierarchy associated to a given controller shall be mounted. The directory is created automati- cally on cgconfig service startup if it does not exist and is deleted on service shutdown. If no mount section is specified, no controllers are mounted. group section has this form: group <name> { [permissions] <controller> { <param name> = <param value>; ... } ... } name Name of the control group. It can contain only characters, which are allowed for directory names. The groups form a tree, i.e. a control group can contain zero or more subgroups. Subgroups can be specified using '/' delimiter. The root control group is always created automatically in all hierarchies and it is the base of the group hierarchy. It can be explicitly specified in cgconfig.conf by using '.' as group name. This can be used e.g. to set its permissions, as shown in Example 6. When the parent control group of a subgroup is not specified it is created automatically. permissions Permissions of the given control group on mounted filesystem. root has always permission to do anything with the control group. Permissions have the following syntax: perm { task { uid = <task user>; gid = <task group>; fperm = <file permissions> } admin { uid = <admin name>; gid = <admin group>; dperm = <directory permissions> fperm = <file permissions> } } task user/group Name of the user and the group, which own the tasks file of the control group. Given fperm then specify the file permissions. Please note that the given value is not used as was specified. Instead, current file owner permis- sions are used as a "umask" for group and others permisions. For example if fperm = 777 then both group and others will get the same permissions as the file owner. admin user/group Name of the user and the group which own the rest of control group's files. Given fperm and dperm control file and directory permissions. Again, the given value is masked by the file/directory owner permissions. Permissions are only apply to the enclosing control group and are not inherited by subgroups. If there is no perm section in the control group definition, root:root is the owner of all files and default file permissions are preserved if fperm resp. dperm are not specified. controller Name of the kernel subsystem. The section can be empty, default kernel parameters will be used in this case. By specifying con- troller the control group and all its parents are controlled by the specific subsystem. One control group can be controlled by mul- tiple subsystems, even if the subsystems are mounted on different directories. Each control group must be controlled by at least one subsystem, so that libcgroup knows in which hierarchies the control group should be created. The parameters of the given controller can be modified in the following section enclosed in brackets. param name Name of the file to set. Each controller can have zero or more parameters. param value Value which should be written to the file when the control group is created. If it is enclosed in double quotes `"', it can contain spaces and other special characters. If no group section is specified, no groups are created. default section has this form: default { perm { task { uid = <task user>; gid = <task group>; fperm = <file permissions> } admin { uid = <admin name>; gid = <admin group>; dperm = <directory permissions> fperm = <file permissions> } } } Content of the perm section has the same form as in group section. The permissions defined here specify owner and permissions of groups and files of all groups, which do not have explicitly specified their permissions in their group section. EXAMPLES
Example 1 The configuration file: mount { cpu = /mnt/cgroups/cpu; cpuacct = /mnt/cgroups/cpu; } creates the hierarchy controlled by two subsystems with no groups inside. It corresponds to the following operations: mkdir /mnt/cgroups/cpu mount -t cgroup -o cpu,cpuacct cpu /mnt/cgroups/cpu Example 2 The configuration file: mount { cpu = /mnt/cgroups/cpu; "name=scheduler" = /mnt/cgroups/cpu; "name=noctrl" = /mnt/cgroups/noctrl; } group daemons { cpu { cpu.shares = "1000"; } } group test { "name=noctrl" { } } creates two hierarchies. One hierarchy named scheduler controlled by cpu subsystem, with group daemons inside. Second hierarchy is named noctrl without any controller, with group test. It corresponds to following operations: mkdir /mnt/cgroups/cpu mount -t cgroup -o cpu,name=scheduler cpu /mnt/cgroups/cpu mount -t cgroup -o none,name=noctrl none /mnt/cgroups/noctrl mkdir /mnt/cgroups/cpu/daemons echo 1000 > /mnt/cgroups/cpu/daemons/www/cpu.shares mkdir /mnt/cgroups/noctrl/tests The daemons group is created automatically when its first subgroup is created. All its parameters have the default value and only root can access group's files. Since both cpuacct and cpu subsystems are mounted to the same directory, all groups are implicitly controlled also by cpuacct subsystem, even if there is no cpuacct section in any of the groups. Example 3 The configuration file: mount { cpu = /mnt/cgroups/cpu; cpuacct = /mnt/cgroups/cpu; } group daemons/www { perm { task { uid = root; gid = webmaster; fperm = 770; } admin { uid = root; gid = root; dperm = 775; fperm = 744; } } cpu { cpu.shares = "1000"; } } group daemons/ftp { perm { task { uid = root; gid = ftpmaster; fperm = 774; } admin { uid = root; gid = root; dperm = 755; fperm = 700; } } cpu { cpu.shares = "500"; } } creates the hierarchy controlled by two subsystems with one group and two subgroups inside, setting one parameter. It corresponds to the following operations (except for file permissions which are little bit trickier to emulate via chmod): mkdir /mnt/cgroups/cpu mount -t cgroup -o cpu,cpuacct cpu /mnt/cgroups/cpu mkdir /mnt/cgroups/cpu/daemons mkdir /mnt/cgroups/cpu/daemons/www chown root:root /mnt/cgroups/cpu/daemons/www/* chown root:webmaster /mnt/cgroups/cpu/daemons/www/tasks echo 1000 > /mnt/cgroups/cpu/daemons/www/cpu.shares # + chmod the files so the result looks like: # ls -la /mnt/cgroups/cpu/daemons/www/ # admin.dperm = 755: # drwxr-xr-x. 2 root webmaster 0 Jun 16 11:51 . # # admin.fperm = 744: # --w-------. 1 root webmaster 0 Jun 16 11:51 cgroup.event_control # -r--r--r--. 1 root webmaster 0 Jun 16 11:51 cgroup.procs # -r--r--r--. 1 root webmaster 0 Jun 16 11:51 cpuacct.stat # -rw-r--r--. 1 root webmaster 0 Jun 16 11:51 cpuacct.usage # -r--r--r--. 1 root webmaster 0 Jun 16 11:51 cpuacct.usage_percpu # -rw-r--r--. 1 root webmaster 0 Jun 16 11:51 cpu.rt_period_us # -rw-r--r--. 1 root webmaster 0 Jun 16 11:51 cpu.rt_runtime_us # -rw-r--r--. 1 root webmaster 0 Jun 16 11:51 cpu.shares # -rw-r--r--. 1 root webmaster 0 Jun 16 11:51 notify_on_release # # tasks.fperm = 770 # -rw-rw----. 1 root webmaster 0 Jun 16 11:51 tasks mkdir /mnt/cgroups/cpu/daemons/ftp chown root:root /mnt/cgroups/cpu/daemons/ftp/* chown root:ftpmaster /mnt/cgroups/cpu/daemons/ftp/tasks echo 500 > /mnt/cgroups/cpu/daemons/ftp/cpu.shares # + chmod the files so the result looks like: # ls -la /mnt/cgroups/cpu/daemons/ftp/ # admin.dperm = 755: # drwxr-xr-x. 2 root ftpmaster 0 Jun 16 11:51 . # # admin.fperm = 700: # --w-------. 1 root ftpmaster 0 Jun 16 11:51 cgroup.event_control # -r--------. 1 root ftpmaster 0 Jun 16 11:51 cgroup.procs # -r--------. 1 root ftpmaster 0 Jun 16 11:51 cpuacct.stat # -rw-------. 1 root ftpmaster 0 Jun 16 11:51 cpuacct.usage # -r--------. 1 root ftpmaster 0 Jun 16 11:51 cpuacct.usage_percpu # -rw-------. 1 root ftpmaster 0 Jun 16 11:51 cpu.rt_period_us # -rw-------. 1 root ftpmaster 0 Jun 16 11:51 cpu.rt_runtime_us # -rw-------. 1 root ftpmaster 0 Jun 16 11:51 cpu.shares # -rw-------. 1 root ftpmaster 0 Jun 16 11:51 notify_on_release # # tasks.fperm = 774: # -rw-rw-r--. 1 root ftpmaster 0 Jun 16 11:51 tasks The daemons group is created automatically when its first subgroup is created. All its parameters have the default value and only root can access the group's files. Since both cpuacct and cpu subsystems are mounted to the same directory, all groups are implicitly also controlled by the cpuacct subsys- tem, even if there is no cpuacct section in any of the groups. Example 4 The configuration file: mount { cpu = /mnt/cgroups/cpu; cpuacct = /mnt/cgroups/cpuacct; } group daemons { cpuacct{ } cpu { } } creates two hierarchies and one common group in both of them. It corresponds to the following operations: mkdir /mnt/cgroups/cpu mkdir /mnt/cgroups/cpuacct mount -t cgroup -o cpu cpu /mnt/cgroups/cpu mount -t cgroup -o cpuacct cpuacct /mnt/cgroups/cpuacct mkdir /mnt/cgroups/cpu/daemons mkdir /mnt/cgroups/cpuacct/daemons In fact there are two groups created. One in the cpuacct hierarchy, the second in the cpu hierarchy. These two groups have nothing in com- mon and can contain different subgroups and different tasks. Example 5 The configuration file: mount { cpu = /mnt/cgroups/cpu; cpuacct = /mnt/cgroups/cpuacct; } group daemons { cpuacct{ } } group daemons/www { cpu { cpu.shares = "1000"; } } group daemons/ftp { cpu { cpu.shares = "500"; } } creates two hierarchies with few groups inside. One of the groups is created in both hierarchies. It corresponds to the following operations: mkdir /mnt/cgroups/cpu mkdir /mnt/cgroups/cpuacct mount -t cgroup -o cpu cpu /mnt/cgroups/cpu mount -t cgroup -o cpuacct cpuacct /mnt/cgroups/cpuacct mkdir /mnt/cgroups/cpuacct/daemons mkdir /mnt/cgroups/cpu/daemons mkdir /mnt/cgroups/cpu/daemons/www echo 1000 > /mnt/cgroups/cpu/daemons/www/cpu.shares mkdir /mnt/cgroups/cpu/daemons/ftp echo 500 > /mnt/cgroups/cpu/daemons/ftp/cpu.shares Group daemons is created in both hierarchies. In the cpuacct hierarchy the group is explicitly mentioned in the configuration file. In the cpu hierarchy the group is created implicitly when www is created there. These two groups have nothing in common, for example they do not share processes and subgroups. Groups www and ftp are created only in the cpu hierarchy and are not controlled by the cpuacct subsystem. Example 6 The configuration file: mount { cpu = /mnt/cgroups/cpu; cpuacct = /mnt/cgroups/cpu; } group . { perm { task { uid = root; gid = operator; } admin { uid = root; gid = operator; } } cpu { } } group daemons { perm { task { uid = root; gid = daemonmaster; } admin { uid = root; gid = operator; } } cpu { } } creates the hierarchy controlled by two subsystems with one group having some special permissions. It corresponds to the following opera- tions: mkdir /mnt/cgroups/cpu mount -t cgroup -o cpu,cpuacct cpu /mnt/cgroups/cpu chown root:operator /mnt/cgroups/cpu/* chown root:operator /mnt/cgroups/cpu/tasks mkdir /mnt/cgroups/cpu/daemons chown root:operator /mnt/cgroups/cpu/daemons/* chown root:daemonmaster /mnt/cgroups/cpu/daemons/tasks Users which are members of the operator group are allowed to administer the control groups, i.e. create new control groups and move pro- cesses between these groups without having root privileges. Members of the daemonmaster group can move processes to the daemons control group, but they can not move the process out of the group. Only the operator or root can do that. RECOMMENDATIONS
Keep hierarchies separated Having multiple hierarchies is perfectly valid and can be useful in various scenarios. To keeps things clean, do not create one group in multiple hierarchies. Examples 4 and 5 show how unreadable and confusing it can be, especially when reading somebody elses configuration file. Explicit is better than implicit libcgroup can implicitly create groups which are needed for the creation of configured subgroups. This may be useful and save some typing in simple scenarios. When it comes to multiple hierarchies, it's better to explicitly specify all groups and all controllers related to them. FILES
/etc/cgconfig.conf default libcgroup configuration file SEE ALSO
cgconfigparser (8) BUGS
Parameter values must be single strings without spaces. Parsing of quoted strings is not implemented. CGCONFIG.CONF(5)
All times are GMT -4. The time now is 11:36 AM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy