Sponsored Content
Full Discussion: Java and Javac problems
Operating Systems Solaris Java and Javac problems Post 302714831 by Fingerz on Friday 12th of October 2012 08:48:22 PM
Old 10-12-2012
Ok everytime I make some progress more is piled on top. However what is piled on top is more jiberess. Its obvious Im new to Unix. If this was windows the program would be installed and usable, done thats it. I would like to make this work, more I would like to understand why its not working. First its an Path issue now its a LD_Library_Path issue. Sorry folks this has been a week of try this do that ect with no explanation. So can anyone point me to the logic behind it all, I mean theres has to be some kind structure yes?
 

3 More Discussions You Might Find Interesting

1. UNIX for Dummies Questions & Answers

piping with javac command

how to i use javac on a file after searching for it? example: find . -name '*.java' -size -24 -links -2 -atime -4 what would happen if "find" found >1 .java files? also, i'm a little confused on the -size property... mix up between -2 and +2... what's the difference? (1 Reply)
Discussion started by: quipy
1 Replies

2. UNIX for Dummies Questions & Answers

Installing Java Problems

Hello, When i attempt to install Java. I get this error code Can someone tell me what im doing wrong. (2 Replies)
Discussion started by: Fob Upset
2 Replies

3. Programming

set javac classpath

I have several jar files in a specific folder, but I can't get javac to understand it. How do I set the classpath for javac. It is NOT the same classpath as the java command. And it's not enough with one jar file. I have several. (1 Reply)
Discussion started by: locoroco
1 Replies
Tk_CreateWindow(3)					       Tk Library Procedures						Tk_CreateWindow(3)

__________________________________________________________________________________________________________________________________________________

NAME
Tk_CreateWindow, Tk_CreateWindowFromPath, Tk_DestroyWindow, Tk_MakeWindowExist - create or delete window SYNOPSIS
#include <tk.h> Tk_Window Tk_CreateWindow(interp, parent, name, topLevScreen) Tk_Window Tk_CreateAnonymousWindow(interp, parent, topLevScreen) Tk_Window Tk_CreateWindowFromPath(interp, tkwin, pathName, topLevScreen) Tk_DestroyWindow(tkwin) Tk_MakeWindowExist(tkwin) ARGUMENTS
Tcl_Interp *interp (out) Tcl interpreter to use for error reporting. If no error occurs, then *interp is not modified. Tk_Window parent (in) Token for the window that is to serve as the logical parent of the new window. const char *name (in) Name to use for this window. Must be unique among all children of the same parent. const char *topLevScreen (in) Has same format as screenName. If NULL, then new window is created as an internal window. If non- NULL, new window is created as a top-level window on screen topLevScreen. If topLevScreen is an empty string ("") then new window is created as top-level window of parent's screen. Tk_Window tkwin (in) Token for window. const char *pathName (in) Name of new window, specified as path name within application (e.g. .a.b.c). _________________________________________________________________ DESCRIPTION
The procedures Tk_CreateWindow, Tk_CreateAnonymousWindow, and Tk_CreateWindowFromPath are used to create new windows for use in Tk-based applications. Each of the procedures returns a token that can be used to manipulate the window in other calls to the Tk library. If the window could not be created successfully, then NULL is returned and interp->result is modified to hold an error message. Tk supports two different kinds of windows: internal windows and top-level windows. An internal window is an interior window of a Tk application, such as a scrollbar or menu bar or button. A top-level window is one that is created as a child of a screen's root window, rather than as an interior window, but which is logically part of some existing main window. Examples of top-level windows are pop-up menus and dialog boxes. New windows may be created by calling Tk_CreateWindow. If the topLevScreen argument is NULL, then the new window will be an internal win- dow. If topLevScreen is non-NULL, then the new window will be a top-level window: topLevScreen indicates the name of a screen and the new window will be created as a child of the root window of topLevScreen. In either case Tk will consider the new window to be the logical child of parent: the new window's path name will reflect this fact, options may be specified for the new window under this assumption, and so on. The only difference is that new X window for a top-level window will not be a child of parent's X window. For example, a pull-down menu's parent would be the button-like window used to invoke it, which would in turn be a child of the menu bar window. A dialog box might have the application's main window as its parent. Tk_CreateAnonymousWindow differs from Tk_CreateWindow in that it creates an unnamed window. This window will be manipulable only using C interfaces, and will not be visible to Tcl scripts. Both interior windows and top-level windows may be created with Tk_CreateAnonymousWin- dow. Tk_CreateWindowFromPath offers an alternate way of specifying new windows. In Tk_CreateWindowFromPath the new window is specified with a token for any window in the target application (tkwin), plus a path name for the new window. It produces the same effect as Tk_CreateWin- dow and allows both top-level and internal windows to be created, depending on the value of topLevScreen. In calls to Tk_CreateWin- dowFromPath, as in calls to Tk_CreateWindow, the parent of the new window must exist at the time of the call, but the new window must not already exist. The window creation procedures do not actually issue the command to X to create a window. Instead, they create a local data structure associated with the window and defer the creation of the X window. The window will actually be created by the first call to Tk_MapWindow. Deferred window creation allows various aspects of the window (such as its size, background color, etc.) to be modified after its creation without incurring any overhead in the X server. When the window is finally mapped all of the window attributes can be set while creating the window. The value returned by a window-creation procedure is not the X token for the window (it cannot be, since X has not been asked to create the window yet). Instead, it is a token for Tk's local data structure for the window. Most of the Tk library procedures take Tk_Window tokens, rather than X identifiers. The actual X window identifier can be retrieved from the local data structure using the Tk_WindowId macro; see the manual entry for Tk_WindowId for details. Tk_DestroyWindow deletes a window and all the data structures associated with it, including any event handlers created with Tk_CreateEven- tHandler. In addition, Tk_DestroyWindow will delete any children of tkwin recursively (where children are defined in the Tk sense, con- sisting of all windows that were created with the given window as parent). If tkwin is an internal window, then event handlers interested in destroy events are invoked immediately. If tkwin is a top-level or main window, then the event handlers will be invoked later, after X has seen the request and returned an event for it. If a window has been created but has not been mapped, so no X window exists, it is possible to force the creation of the X window by call- ing Tk_MakeWindowExist. This procedure issues the X commands to instantiate the window given by tkwin. KEYWORDS
create, deferred creation, destroy, display, internal window, screen, top-level window, window Tk 4.2 Tk_CreateWindow(3)
All times are GMT -4. The time now is 01:14 PM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy