Sponsored Content
Special Forums Cybersecurity root cannot write to Linux RAM Post 302583873 by Alux on Wednesday 21st of December 2011 01:15:28 PM
Old 12-21-2011
My errors;

Quote:
[xander@localhost ~]$ gcc overflow.c -o over
overflow.c: In function ‘main’:
overflow.c:3:8: error: expected identifier or ‘(’ before ‘long’
overflow.c:3:13: error: expected ‘)’ before ‘(’ token
overflow.c:7:2: error: ‘array’ undeclared (first use in this function)
overflow.c:7:2: note: each undeclared identifier is reported only once for each function it appears in
overflow.c:8:1: warning: incompatible implicit declaration of built-in function ‘printf’
 

10 More Discussions You Might Find Interesting

1. UNIX for Dummies Questions & Answers

Athlon XP + Linux/Unix? and RAM Question

Has anyone had any experience with this new processor and its compatability with Linux/Unix? How did it preform comared to regular Athlons and P4's? I also have one other question. I plan on buying a new dell and fiddling left and right with it. Which type of RAM is better, RDRAM or... (3 Replies)
Discussion started by: KyPeN
3 Replies

2. UNIX for Dummies Questions & Answers

How much RAM does RH Linux need?

I wish to install Red Hat linux 7.1 on a machine with 16mb of EDO Ram. When I enter the instalation process I am told 'You do not have enough memory'. Is there a way to install RHL with only the 16? Or will I have to upgrade and buy some very expensive EDO. ~ Paul (3 Replies)
Discussion started by: KrazyGuyPaul
3 Replies

3. UNIX for Dummies Questions & Answers

How do i access (mount, read & write) a floppy disk from the console, not being root?

welll, the title quite explains what i want to do thanks for your time! (4 Replies)
Discussion started by: kfaday
4 Replies

4. Debian

what is the best linux ver for p100 16 ram

Hello all i own p100 16ram laptop , i would like to run linux on it i need it for gcc compilation and shell scripting , no gui. what version of linux should i install , i dont mind to install old one . tnx allot (5 Replies)
Discussion started by: umen
5 Replies

5. UNIX for Dummies Questions & Answers

Linux for Pentium @ 150 Mhz and 98Mb in RAM?

I don't know a lot of the world of Linux, but i want to start with an old machine; did someone knows if i can install Linux in a computer with a processor Pentium (not celeron) @ 133 Mhz, 98Mb in RAM (PC100) and 3Gb Hard Drive? a friend tell me about Ubuntu and openSUSE, but I don't know if... (5 Replies)
Discussion started by: Omega
5 Replies

6. Shell Programming and Scripting

To find the RAM size for an Linux server.

Hi Gurus, Can someone let me know how to find the RAM size,ROM size and Number of processors for a linux server. Version :Linux 2.4.9-e.57smp Also what does "e.57smp" stands for? Thanks in advance gurus..... cheers. (3 Replies)
Discussion started by: navojit dutta
3 Replies

7. Linux

Installation of Linux in 300 MHz with 128 MB ram

Hi I am very new to Linux, but very keen to learn it. I am having a desktop of 300 MHz with 128 MB RAM and 30 GB hard drive with Windows XP. My first question is - Is there any version/flavour of Linux available that can be installed on above system especially Fedora with less compromise... (6 Replies)
Discussion started by: sanjay1979
6 Replies

8. Red Hat

red hat Linux 5.0 is detecting 3gb ram but physical ram is 16gb

Hi, On server 64bit Hw Arch , Linux 5.0(32bit) is installed it is showing only 3gb of ram though physical is 16gb can u give me idea why? (4 Replies)
Discussion started by: manoj.solaris
4 Replies

9. Linux Benchmarks

AMD Phenom(tm) 9950 Quad-Core Processor, Ram: 3.6 GB, Foxconn 7da-s and Linux 2.6.26-2-amd64

CPU/Speed: AMD Phenom(tm) 9950 Quad-Core Processor Ram: 3.6 GB Motherboard: Foxconn 7da-s Bus: Cache: Controller: Disk: Load: Kernel: Linux 2.6.26-2-amd64 Kernel ELF?: pgms: ============================================================== BYTE UNIX Benchmarks (Version... (0 Replies)
Discussion started by: migracho
0 Replies

10. Linux

Need assistance to enable more that 4GB RAM on Linux 32Bit OS.

How to enable more than 4GB RAM support on Linux 32bit OS? OS: CentOS release 5.4 (Final) Kernel version: 2.6.18-53.el5 Arch: 32Bit I got solution at Innovationframes.com • View topic - How to enable more than 4GB RAM support on Linux 32bit OS? but my question is the steps given... (5 Replies)
Discussion started by: chandranjoy
5 Replies
MLOCK(2)						     Linux Programmer's Manual							  MLOCK(2)

NAME
mlock, munlock, mlockall, munlockall - lock and unlock memory SYNOPSIS
#include <sys/mman.h> int mlock(const void *addr, size_t len); int munlock(const void *addr, size_t len); int mlockall(int flags); int munlockall(void); DESCRIPTION
mlock() and mlockall() respectively lock part or all of the calling process's virtual address space into RAM, preventing that memory from being paged to the swap area. munlock() and munlockall() perform the converse operation, respectively unlocking part or all of the calling process's virtual address space, so that pages in the specified virtual address range may once more to be swapped out if required by the kernel memory manager. Memory locking and unlocking are performed in units of whole pages. mlock() and munlock() mlock() locks pages in the address range starting at addr and continuing for len bytes. All pages that contain a part of the specified address range are guaranteed to be resident in RAM when the call returns successfully; the pages are guaranteed to stay in RAM until later unlocked. munlock() unlocks pages in the address range starting at addr and continuing for len bytes. After this call, all pages that contain a part of the specified memory range can be moved to external swap space again by the kernel. mlockall() and munlockall() mlockall() locks all pages mapped into the address space of the calling process. This includes the pages of the code, data and stack seg- ment, as well as shared libraries, user space kernel data, shared memory, and memory-mapped files. All mapped pages are guaranteed to be resident in RAM when the call returns successfully; the pages are guaranteed to stay in RAM until later unlocked. The flags argument is constructed as the bitwise OR of one or more of the following constants: MCL_CURRENT Lock all pages which are currently mapped into the address space of the process. MCL_FUTURE Lock all pages which will become mapped into the address space of the process in the future. These could be for instance new pages required by a growing heap and stack as well as new memory mapped files or shared memory regions. If MCL_FUTURE has been specified, then a later system call (e.g., mmap(2), sbrk(2), malloc(3)), may fail if it would cause the number of locked bytes to exceed the permitted maximum (see below). In the same circumstances, stack growth may likewise fail: the kernel will deny stack expansion and deliver a SIGSEGV signal to the process. munlockall() unlocks all pages mapped into the address space of the calling process. RETURN VALUE
On success these system calls return 0. On error, -1 is returned, errno is set appropriately, and no changes are made to any locks in the address space of the process. ERRORS
ENOMEM (Linux 2.6.9 and later) the caller had a nonzero RLIMIT_MEMLOCK soft resource limit, but tried to lock more memory than the limit permitted. This limit is not enforced if the process is privileged (CAP_IPC_LOCK). ENOMEM (Linux 2.4 and earlier) the calling process tried to lock more than half of RAM. EPERM The caller is not privileged, but needs privilege (CAP_IPC_LOCK) to perform the requested operation. For mlock() and munlock(): EAGAIN Some or all of the specified address range could not be locked. EINVAL The result of the addition start+len was less than start (e.g., the addition may have resulted in an overflow). EINVAL (Not on Linux) addr was not a multiple of the page size. ENOMEM Some of the specified address range does not correspond to mapped pages in the address space of the process. For mlockall(): EINVAL Unknown flags were specified. For munlockall(): EPERM (Linux 2.6.8 and earlier) The caller was not privileged (CAP_IPC_LOCK). CONFORMING TO
POSIX.1-2001, SVr4. AVAILABILITY
On POSIX systems on which mlock() and munlock() are available, _POSIX_MEMLOCK_RANGE is defined in <unistd.h> and the number of bytes in a page can be determined from the constant PAGESIZE (if defined) in <limits.h> or by calling sysconf(_SC_PAGESIZE). On POSIX systems on which mlockall() and munlockall() are available, _POSIX_MEMLOCK is defined in <unistd.h> to a value greater than 0. (See also sysconf(3).) NOTES
Memory locking has two main applications: real-time algorithms and high-security data processing. Real-time applications require determin- istic timing, and, like scheduling, paging is one major cause of unexpected program execution delays. Real-time applications will usually also switch to a real-time scheduler with sched_setscheduler(2). Cryptographic security software often handles critical bytes like pass- words or secret keys as data structures. As a result of paging, these secrets could be transferred onto a persistent swap store medium, where they might be accessible to the enemy long after the security software has erased the secrets in RAM and terminated. (But be aware that the suspend mode on laptops and some desktop computers will save a copy of the system's RAM to disk, regardless of memory locks.) Real-time processes that are using mlockall() to prevent delays on page faults should reserve enough locked stack pages before entering the time-critical section, so that no page fault can be caused by function calls. This can be achieved by calling a function that allocates a sufficiently large automatic variable (an array) and writes to the memory occupied by this array in order to touch these stack pages. This way, enough pages will be mapped for the stack and can be locked into RAM. The dummy writes ensure that not even copy-on-write page faults can occur in the critical section. Memory locks are not inherited by a child created via fork(2) and are automatically removed (unlocked) during an execve(2) or when the process terminates. The memory lock on an address range is automatically removed if the address range is unmapped via munmap(2). Memory locks do not stack, that is, pages which have been locked several times by calls to mlock() or mlockall() will be unlocked by a sin- gle call to munlock() for the corresponding range or by munlockall(). Pages which are mapped to several locations or by several processes stay locked into RAM as long as they are locked at least at one location or by at least one process. Linux notes Under Linux, mlock() and munlock() automatically round addr down to the nearest page boundary. However, POSIX.1-2001 allows an implementa- tion to require that addr is page aligned, so portable applications should ensure this. The VmLck field of the Linux-specific /proc/PID/status file shows how many kilobytes of memory the process with ID PID has locked using mlock(), mlockall(), and mmap(2) MAP_LOCKED. Limits and permissions In Linux 2.6.8 and earlier, a process must be privileged (CAP_IPC_LOCK) in order to lock memory and the RLIMIT_MEMLOCK soft resource limit defines a limit on how much memory the process may lock. Since Linux 2.6.9, no limits are placed on the amount of memory that a privileged process can lock and the RLIMIT_MEMLOCK soft resource limit instead defines a limit on how much memory an unprivileged process may lock. BUGS
In the 2.4 series Linux kernels up to and including 2.4.17, a bug caused the mlockall() MCL_FUTURE flag to be inherited across a fork(2). This was rectified in kernel 2.4.18. Since kernel 2.6.9, if a privileged process calls mlockall(MCL_FUTURE) and later drops privileges (loses the CAP_IPC_LOCK capability by, for example, setting its effective UID to a nonzero value), then subsequent memory allocations (e.g., mmap(2), brk(2)) will fail if the RLIMIT_MEMLOCK resource limit is encountered. SEE ALSO
mmap(2), setrlimit(2), shmctl(2), sysconf(3), proc(5), capabilities(7) COLOPHON
This page is part of release 3.53 of the Linux man-pages project. A description of the project, and information about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/. Linux 2011-09-14 MLOCK(2)
All times are GMT -4. The time now is 09:34 AM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy