Sponsored Content
Full Discussion: unnamed pipes and threads
Top Forums Programming unnamed pipes and threads Post 302574035 by Corona688 on Wednesday 16th of November 2011 10:05:42 AM
Old 11-16-2011
Quote:
Originally Posted by agama
Thanks.



I thought so too, but I gave the code a try on both a SUSE and FreeBSD and it doesn't block either way.
Good to know.

I know it definitely used to block until it had full lines, though. I was trying to use pipes for inter-thread communication in Linux many years ago, and found it much easier to write newlines than to do non-blocking I/O. So I'm not sure you can depend on the pipe not blocking like that.
 

10 More Discussions You Might Find Interesting

1. Filesystems, Disks and Memory

PIPEs and Named PIPEs (FIFO) Buffer size

Hello! How I can increase or decrease predefined pipe buffer size? System FreeBSD 4.9 and RedHat Linux 9.0 Thanks! (1 Reply)
Discussion started by: Jus
1 Replies

2. Shell Programming and Scripting

cd using pipes

Hi, Can the cd command be invoked using pipes??? My actual question is slightly different. I am trying to run an executable from different folders and the path of these folders are obtained dynamically from the front end. Is there a way in which i can actually run the executable... (2 Replies)
Discussion started by: Sinbad
2 Replies

3. Programming

pipes + structs

heya got a small problem here. im trying to pipe eg: 'ls | more'. i have created a command line parser which separates ls and more into two commands. i have also created a struct, each struct has a command name, number of arguments, redirect_in, redirect_out, pipe_in, etc etc.... eg: struct... (0 Replies)
Discussion started by: mile1982
0 Replies

4. Programming

pipes inside

Extremely need to understand some aspects of pipes realization. The main question is in which memory are pipes placed? (13 Replies)
Discussion started by: pranki
13 Replies

5. UNIX for Advanced & Expert Users

FIFO Pipes

Hi...Can anyone please guide me on FIFO Pipes in UNIX.I have lerant things like creating fifo pipes,using them for reads and writes etc.I want to know what is the maximum amount of memory that such a pipe may have? Also can anyone guide me on where to get info on this topic from? (4 Replies)
Discussion started by: tej.buch
4 Replies

6. UNIX for Advanced & Expert Users

Threads and Threads Count ?

Hi all, How can I get the list of all Threads and the Total count of threads under a particular process ? Do suggest !! Awaiting for the replies !! Thanks Varun:b: (2 Replies)
Discussion started by: varungupta
2 Replies

7. Shell Programming and Scripting

Pipes not working

Hi, thanks for b4. can anyone tell me why following not working: noUsers=$(who | cut -d" " -f1 | wc -l) What i'm trying to do is get a list of logged on users and pass it to 'wc -l' and store the output to a variable. Any ideas? (1 Reply)
Discussion started by: Furqan_79
1 Replies

8. Programming

Pipes in C

Hello all, I am trying to learn more about programming Unix pipes in C. I have created a pipe that does od -bc < myfile | head Now, I am trying to create od -bc < myfile | head | wc Here is my code, and I know I might be off, thats why I am here so I can get some clarification. #include... (1 Reply)
Discussion started by: petrca
1 Replies

9. Programming

Problem with pipes

problem solved. (1 Reply)
Discussion started by: superfons
1 Replies

10. Programming

Child threads communicating with main thread via pipes

I have a simple client/server program I am using for learning purposes. I have it setup so that after server is setup and listening it than goes into a loop where it accepts incoming client connections. After each connection, the client socket is than passed to a thread routine where it can be... (3 Replies)
Discussion started by: Majortom71
3 Replies
PIPE(7) 						     Linux Programmer's Manual							   PIPE(7)

NAME
pipe - overview of pipes and FIFOs DESCRIPTION
Pipes and FIFOs (also known as named pipes) provide a unidirectional interprocess communication channel. A pipe has a read end and a write end. Data written to the write end of a pipe can be read from the read end of the pipe. A pipe is created using pipe(2), which creates a new pipe and returns two file descriptors, one referring to the read end of the pipe, the other referring to the write end. Pipes can be used to create a communication channel between related processes; see pipe(2) for an exam- ple. A FIFO (short for First In First Out) has a name within the file system (created using mkfifo(3)), and is opened using open(2). Any process may open a FIFO, assuming the file permissions allow it. The read end is opened using the O_RDONLY flag; the write end is opened using the O_WRONLY flag. See fifo(7) for further details. Note: although FIFOs have a pathname in the file system, I/O on FIFOs does not involve operations on the underlying device (if there is one). I/O on pipes and FIFOs The only difference between pipes and FIFOs is the manner in which they are created and opened. Once these tasks have been accomplished, I/O on pipes and FIFOs has exactly the same semantics. If a process attempts to read from an empty pipe, then read(2) will block until data is available. If a process attempts to write to a full pipe (see below), then write(2) blocks until sufficient data has been read from the pipe to allow the write to complete. Nonblocking I/O is possible by using the fcntl(2) F_SETFL operation to enable the O_NONBLOCK open file status flag. The communication channel provided by a pipe is a byte stream: there is no concept of message boundaries. If all file descriptors referring to the write end of a pipe have been closed, then an attempt to read(2) from the pipe will see end-of- file (read(2) will return 0). If all file descriptors referring to the read end of a pipe have been closed, then a write(2) will cause a SIGPIPE signal to be generated for the calling process. If the calling process is ignoring this signal, then write(2) fails with the error EPIPE. An application that uses pipe(2) and fork(2) should use suitable close(2) calls to close unnecessary duplicate file descriptors; this ensures that end-of-file and SIGPIPE/EPIPE are delivered when appropriate. It is not possible to apply lseek(2) to a pipe. Pipe capacity A pipe has a limited capacity. If the pipe is full, then a write(2) will block or fail, depending on whether the O_NONBLOCK flag is set (see below). Different implementations have different limits for the pipe capacity. Applications should not rely on a particular capac- ity: an application should be designed so that a reading process consumes data as soon as it is available, so that a writing process does not remain blocked. In Linux versions before 2.6.11, the capacity of a pipe was the same as the system page size (e.g., 4096 bytes on i386). Since Linux 2.6.11, the pipe capacity is 65536 bytes. PIPE_BUF POSIX.1-2001 says that write(2)s of less than PIPE_BUF bytes must be atomic: the output data is written to the pipe as a contiguous sequence. Writes of more than PIPE_BUF bytes may be nonatomic: the kernel may interleave the data with data written by other processes. POSIX.1-2001 requires PIPE_BUF to be at least 512 bytes. (On Linux, PIPE_BUF is 4096 bytes.) The precise semantics depend on whether the file descriptor is nonblocking (O_NONBLOCK), whether there are multiple writers to the pipe, and on n, the number of bytes to be written: O_NONBLOCK disabled, n <= PIPE_BUF All n bytes are written atomically; write(2) may block if there is not room for n bytes to be written immediately O_NONBLOCK enabled, n <= PIPE_BUF If there is room to write n bytes to the pipe, then write(2) succeeds immediately, writing all n bytes; otherwise write(2) fails, with errno set to EAGAIN. O_NONBLOCK disabled, n > PIPE_BUF The write is nonatomic: the data given to write(2) may be interleaved with write(2)s by other process; the write(2) blocks until n bytes have been written. O_NONBLOCK enabled, n > PIPE_BUF If the pipe is full, then write(2) fails, with errno set to EAGAIN. Otherwise, from 1 to n bytes may be written (i.e., a "partial write" may occur; the caller should check the return value from write(2) to see how many bytes were actually written), and these bytes may be interleaved with writes by other processes. Open file status flags The only open file status flags that can be meaningfully applied to a pipe or FIFO are O_NONBLOCK and O_ASYNC. Setting the O_ASYNC flag for the read end of a pipe causes a signal (SIGIO by default) to be generated when new input becomes available on the pipe (see fcntl(2) for details). On Linux, O_ASYNC is supported for pipes and FIFOs only since kernel 2.6. Portability notes On some systems (but not Linux), pipes are bidirectional: data can be transmitted in both directions between the pipe ends. According to POSIX.1-2001, pipes only need to be unidirectional. Portable applications should avoid reliance on bidirectional pipe semantics. SEE ALSO
dup(2), fcntl(2), open(2), pipe(2), poll(2), select(2), socketpair(2), stat(2), mkfifo(3), epoll(7), fifo(7) COLOPHON
This page is part of release 3.53 of the Linux man-pages project. A description of the project, and information about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/. Linux 2005-12-08 PIPE(7)
All times are GMT -4. The time now is 07:02 PM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy