Sponsored Content
Operating Systems HP-UX Sending email to multiple IDs Post 302398780 by lodey on Thursday 25th of February 2010 02:03:40 PM
Old 02-25-2010
I use elm and use the following way to send an email to multiple addresses:

elm -s "File Changed" $(</users/lodey/logs/pelist.txt)

The email addresses are contained in the text file

The text file looks like this:
u@me.com
test@123.ie
bedtime@night.com

Last edited by lodey; 02-25-2010 at 03:27 PM.. Reason: edit text file
 

8 More Discussions You Might Find Interesting

1. Shell Programming and Scripting

Sending Multiple Files through email

Hi Everyone, I'm using the uuencode command with the mail command to send out emails through a UNIX script. The problems is that i have a number of gif files that i need to attach to a single email but the number and name of the gif files is not static. Example today the folder home/Desktop may... (4 Replies)
Discussion started by: nbvcxzdz
4 Replies

2. UNIX for Dummies Questions & Answers

Sending mails to various users without hard coding the email IDS

Hi Can any one help me out ? I am trying to send an autogenerated mail with an attachment to bulk of users using 'MAILX' and 'UNENCODE' . I have used it as follows X " ( cat /sastemp/body.txt; uuencode Test.xls.gz Test.xls.gz ) | mailx -s 'Testing' ' abcd@yahoo.com , efgh@gmail.com ' " ... (9 Replies)
Discussion started by: manas6
9 Replies

3. Shell Programming and Scripting

Send Email to group ids

hi, I want to send mail to DL... i am sending email to single id using mailx .. how to send to group of ids? :confused: i am using a file which conatins all the ids, is there any other way to send mail without creating the DLfile? DL=path\file.txt mailx -s "Info BG is now... (4 Replies)
Discussion started by: sreelu
4 Replies

4. Shell Programming and Scripting

Sending email with multiple files..

Hello,, I am loading data into the 4 tables from 4 different input files. The data gets loaded, and the e-mail is also sent to the user, but the log files for all the 4 files is not been sent.. I am trying to send e-mail to users with the log file as attachment. The script is as follows:... (30 Replies)
Discussion started by: msrahman
30 Replies

5. UNIX for Dummies Questions & Answers

Email ids trucated in Mailx function

I wanted to send email to list of people using mailx in unix. I am getting the emailds from a oracle table and getting the ids in a variable. Shell script is shown below: ----------------------------------------------------------------------- filename=testdata921 export filename... (5 Replies)
Discussion started by: sasi02
5 Replies

6. Shell Programming and Scripting

Using top command to email if process is exceeding 25% and sending an email alert if so

This is my first time writing a script and Im having some trouble, Im trying to use the top command to monitor processes and the amount of CPU usage they require, my aim is to get an email if a process takes over a certain percentage of CPU usage I tried grep Obviosly that hasnt worked, Any... (8 Replies)
Discussion started by: jay02
8 Replies

7. Solaris

Sending Mails to the Multiple Email Address

Hi All, I am pretty new to the mail service in Sun Solaris 5.10. If anybody help me in writing a script for the multiple recipient with subject and the body would be a helpful. Kindly help... Thanks in advance. :) Warm Regards, Pramod (5 Replies)
Discussion started by: Pramod_009
5 Replies

8. Emergency UNIX and Linux Support

Email ids from gecos

I would like to extract only the email ids from the gecos of each user id. I have to get the email ids of all the users on the server like this. Can someone please assist me with the command/script? (15 Replies)
Discussion started by: ggayathri
15 Replies
QUEUE(3)						     Linux Programmer's Manual							  QUEUE(3)

NAME
LIST_ENTRY, LIST_HEAD, LIST_INIT, LIST_INSERT_AFTER, LIST_INSERT_HEAD, LIST_REMOVE, TAILQ_ENTRY, TAILQ_HEAD, TAILQ_INIT, TAILQ_INSERT_AFTER, TAILQ_INSERT_HEAD, TAILQ_INSERT_TAIL, TAILQ_REMOVE, CIRCLEQ_ENTRY, CIRCLEQ_HEAD, CIRCLEQ_INIT, CIRCLEQ_INSERT_AFTER, CIRCLEQ_INSERT_BEFORE, CIRCLEQ_INSERT_HEAD, CIRCLEQ_INSERT_TAIL, CIRCLEQ_REMOVE - implementations of lists, tail queues, and circular queues SYNOPSIS
#include <sys/queue.h> LIST_ENTRY(TYPE); LIST_HEAD(HEADNAME, TYPE); LIST_INIT(LIST_HEAD *head); LIST_INSERT_AFTER(LIST_ENTRY *listelm, TYPE *elm, LIST_ENTRY NAME); LIST_INSERT_HEAD(LIST_HEAD *head, TYPE *elm, LIST_ENTRY NAME); LIST_REMOVE(TYPE *elm, LIST_ENTRY NAME); TAILQ_ENTRY(TYPE); TAILQ_HEAD(HEADNAME, TYPE); TAILQ_INIT(TAILQ_HEAD *head); TAILQ_INSERT_AFTER(TAILQ_HEAD *head, TYPE *listelm, TYPE *elm, TAILQ_ENTRY NAME); TAILQ_INSERT_HEAD(TAILQ_HEAD *head, TYPE *elm, TAILQ_ENTRY NAME); TAILQ_INSERT_TAIL(TAILQ_HEAD *head, TYPE *elm, TAILQ_ENTRY NAME); TAILQ_REMOVE(TAILQ_HEAD *head, TYPE *elm, TAILQ_ENTRY NAME); CIRCLEQ_ENTRY(TYPE); CIRCLEQ_HEAD(HEADNAME, TYPE); CIRCLEQ_INIT(CIRCLEQ_HEAD *head); CIRCLEQ_INSERT_AFTER(CIRCLEQ_HEAD *head, TYPE *listelm, TYPE *elm, CIRCLEQ_ENTRY NAME); CIRCLEQ_INSERT_BEFORE(CIRCLEQ_HEAD *head, TYPE *listelm, TYPE *elm, CIRCLEQ_ENTRY NAME); CIRCLEQ_INSERT_HEAD(CIRCLEQ_HEAD *head, TYPE *elm, CIRCLEQ_ENTRY NAME); CIRCLEQ_INSERT_TAIL(CIRCLEQ_HEAD *head, TYPE *elm, CIRCLEQ_ENTRY NAME); CIRCLEQ_REMOVE(CIRCLEQ_HEAD *head, TYPE *elm, CIRCLEQ_ENTRY NAME); DESCRIPTION
These macros define and operate on three types of data structures: lists, tail queues, and circular queues. All three structures support the following functionality: * Insertion of a new entry at the head of the list. * Insertion of a new entry after any element in the list. * Removal of any entry in the list. * Forward traversal through the list. Lists are the simplest of the three data structures and support only the above functionality. Tail queues add the following functionality: * Entries can be added at the end of a list. However: 1. All list insertions and removals must specify the head of the list. 2. Each head entry requires two pointers rather than one. 3. Code size is about 15% greater and operations run about 20% slower than lists. Circular queues add the following functionality: * Entries can be added at the end of a list. * Entries can be added before another entry. * They may be traversed backward, from tail to head. However: 1. All list insertions and removals must specify the head of the list. 2. Each head entry requires two pointers rather than one. 3. The termination condition for traversal is more complex. 4. Code size is about 40% greater and operations run about 45% slower than lists. In the macro definitions, TYPE is the name of a user-defined structure, that must contain a field of type LIST_ENTRY, TAILQ_ENTRY, or CIR- CLEQ_ENTRY, named NAME. The argument HEADNAME is the name of a user-defined structure that must be declared using the macros LIST_HEAD, TAILQ_HEAD, or CIRCLEQ_HEAD. See the examples below for further explanation of how these macros are used. Lists A list is headed by a structure defined by the LIST_HEAD macro. This structure contains a single pointer to the first element on the list. The elements are doubly linked so that an arbitrary element can be removed without traversing the list. New elements can be added to the list after an existing element or at the head of the list. A LIST_HEAD structure is declared as follows: LIST_HEAD(HEADNAME, TYPE) head; where HEADNAME is the name of the structure to be defined, and TYPE is the type of the elements to be linked into the list. A pointer to the head of the list can later be declared as: struct HEADNAME *headp; (The names head and headp are user selectable.) The macro LIST_ENTRY declares a structure that connects the elements in the list. The macro LIST_INIT initializes the list referenced by head. The macro LIST_INSERT_HEAD inserts the new element elm at the head of the list. The macro LIST_INSERT_AFTER inserts the new element elm after the element listelm. The macro LIST_REMOVE removes the element elm from the list. List example LIST_HEAD(listhead, entry) head; struct listhead *headp; /* List head. */ struct entry { ... LIST_ENTRY(entry) entries; /* List. */ ... } *n1, *n2, *np; LIST_INIT(&head); /* Initialize the list. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ LIST_INSERT_HEAD(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ LIST_INSERT_AFTER(n1, n2, entries); /* Forward traversal. */ for (np = head.lh_first; np != NULL; np = np->entries.le_next) np-> ... while (head.lh_first != NULL) /* Delete. */ LIST_REMOVE(head.lh_first, entries); Tail queues A tail queue is headed by a structure defined by the TAILQ_HEAD macro. This structure contains a pair of pointers, one to the first ele- ment in the tail queue and the other to the last element in the tail queue. The elements are doubly linked so that an arbitrary element can be removed without traversing the tail queue. New elements can be added to the tail queue after an existing element, at the head of the tail queue, or at the end of the tail queue. A TAILQ_HEAD structure is declared as follows: TAILQ_HEAD(HEADNAME, TYPE) head; where HEADNAME is the name of the structure to be defined, and TYPE is the type of the elements to be linked into the tail queue. A pointer to the head of the tail queue can later be declared as: struct HEADNAME *headp; (The names head and headp are user selectable.) The macro TAILQ_ENTRY declares a structure that connects the elements in the tail queue. The macro TAILQ_INIT initializes the tail queue referenced by head. The macro TAILQ_INSERT_HEAD inserts the new element elm at the head of the tail queue. The macro TAILQ_INSERT_TAIL inserts the new element elm at the end of the tail queue. The macro TAILQ_INSERT_AFTER inserts the new element elm after the element listelm. The macro TAILQ_REMOVE removes the element elm from the tail queue. Tail queue example TAILQ_HEAD(tailhead, entry) head; struct tailhead *headp; /* Tail queue head. */ struct entry { ... TAILQ_ENTRY(entry) entries; /* Tail queue. */ ... } *n1, *n2, *np; TAILQ_INIT(&head); /* Initialize the queue. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ TAILQ_INSERT_HEAD(&head, n1, entries); n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ TAILQ_INSERT_TAIL(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ TAILQ_INSERT_AFTER(&head, n1, n2, entries); /* Forward traversal. */ for (np = head.tqh_first; np != NULL; np = np->entries.tqe_next) np-> ... /* Delete. */ while (head.tqh_first != NULL) TAILQ_REMOVE(&head, head.tqh_first, entries); Circular queues A circular queue is headed by a structure defined by the CIRCLEQ_HEAD macro. This structure contains a pair of pointers, one to the first element in the circular queue and the other to the last element in the circular queue. The elements are doubly linked so that an arbitrary element can be removed without traversing the queue. New elements can be added to the queue after an existing element, before an existing element, at the head of the queue, or at the end of the queue. A CIRCLEQ_HEAD structure is declared as follows: CIRCLEQ_HEAD(HEADNAME, TYPE) head; where HEADNAME is the name of the structure to be defined, and TYPE is the type of the elements to be linked into the circular queue. A pointer to the head of the circular queue can later be declared as: struct HEADNAME *headp; (The names head and headp are user selectable.) The macro CIRCLEQ_ENTRY declares a structure that connects the elements in the circular queue. The macro CIRCLEQ_INIT initializes the circular queue referenced by head. The macro CIRCLEQ_INSERT_HEAD inserts the new element elm at the head of the circular queue. The macro CIRCLEQ_INSERT_TAIL inserts the new element elm at the end of the circular queue. The macro CIRCLEQ_INSERT_AFTER inserts the new element elm after the element listelm. The macro CIRCLEQ_INSERT_BEFORE inserts the new element elm before the element listelm. The macro CIRCLEQ_REMOVE removes the element elm from the circular queue. Circular queue example CIRCLEQ_HEAD(circleq, entry) head; struct circleq *headp; /* Circular queue head. */ struct entry { ... CIRCLEQ_ENTRY(entry) entries; /* Circular queue. */ ... } *n1, *n2, *np; CIRCLEQ_INIT(&head); /* Initialize the circular queue. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ CIRCLEQ_INSERT_HEAD(&head, n1, entries); n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ CIRCLEQ_INSERT_TAIL(&head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ CIRCLEQ_INSERT_AFTER(&head, n1, n2, entries); n2 = malloc(sizeof(struct entry)); /* Insert before. */ CIRCLEQ_INSERT_BEFORE(&head, n1, n2, entries); /* Forward traversal. */ for (np = head.cqh_first; np != (void *)&head; np = np->entries.cqe_next) np-> ... /* Reverse traversal. */ for (np = head.cqh_last; np != (void *)&head; np = np->entries.cqe_prev) np-> ... /* Delete. */ while (head.cqh_first != (void *)&head) CIRCLEQ_REMOVE(&head, head.cqh_first, entries); CONFORMING TO
Not in POSIX.1-2001. Present on the BSDs. The queue functions first appeared in 4.4BSD. COLOPHON
This page is part of release 3.53 of the Linux man-pages project. A description of the project, and information about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/. Linux 2007-12-28 QUEUE(3)
All times are GMT -4. The time now is 04:50 AM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy