Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

puzawa(4rheolef) [debian man page]

puzawa(4rheolef)						    rheolef-6.1 						  puzawa(4rheolef)

NAME
puzawa -- Uzawa algorithm. SYNOPSIS
template <class Matrix, class Vector, class Preconditioner, class Real> int puzawa (const Matrix &A, Vector &x, const Vector &b, const Preconditioner &M, int &max_iter, Real &tol, const Real& rho, odiststream *p_derr=0); EXAMPLE
The simplest call to 'puzawa' has the folling form: size_t max_iter = 100; double tol = 1e-7; int status = puzawa(A, x, b, EYE, max_iter, tol, 1.0, &derr); DESCRIPTION
puzawa solves the linear system A*x=b using the Uzawa method. The Uzawa method is a descent method in the direction opposite to the gradi- ent, with a constant step length 'rho'. The convergence is assured when the step length 'rho' is small enough. If matrix A is symmetric positive definite, please uses 'pcg' that computes automatically the optimal descdnt step length at each iteration. The return value indicates convergence within max_iter (input) iterations(0), or no convergence within max_iter iterations(1). Upon suc- cessful return, output arguments have the following values: x approximate solution to Ax = b max_iter the number of iterations performed before the tolerance was reached tol the residual after the final iteration IMPLEMENTATION
template < class Matrix, class Vector, class Preconditioner, class Real, class Size> int puzawa(const Matrix &A, Vector &x, const Vector &Mb, const Preconditioner &M, Size &max_iter, Real &tol, const Real& rho, odiststream *p_derr, std::string label) { Vector b = M.solve(Mb); Real norm2_b = dot(Mb,b); Real norm2_r = norm2_b; if (norm2_b == Real(0)) norm2_b = 1; if (p_derr) (*p_derr) << "[" << label << "] #iteration residue" << std::endl; for (Size n = 0; n <= max_iter; n++) { Vector Mr = A*x - Mb; Vector r = M.solve(Mr); norm2_r = dot(Mr, r); if (p_derr) (*p_derr) << "[" << label << "] " << n << " " << sqrt(norm2_r/norm2_b) << std::endl; if (norm2_r <= sqr(tol)*norm2_b) { tol = sqrt(norm2_r/norm2_b); max_iter = n; return 0; } x -= rho*r; } tol = sqrt(norm2_r/norm2_b); return 1; } rheolef-6.1 rheolef-6.1 puzawa(4rheolef)

Check Out this Related Man Page

pcg(4rheolef)							    rheolef-6.1 						     pcg(4rheolef)

NAME
pcg -- conjugate gradient algorithm. SYNOPSIS
template <class Matrix, class Vector, class Preconditioner, class Real> int pcg (const Matrix &A, Vector &x, const Vector &b, const Preconditioner &M, int &max_iter, Real &tol, odiststream *p_derr=0); EXAMPLE
The simplest call to 'pcg' has the folling form: size_t max_iter = 100; double tol = 1e-7; int status = pcg(a, x, b, EYE, max_iter, tol, &derr); DESCRIPTION
pcg solves the symmetric positive definite linear system Ax=b using the Conjugate Gradient method. The return value indicates convergence within max_iter (input) iterations(0), or no convergence within max_iter iterations(1). Upon suc- cessful return, output arguments have the following values: x approximate solution to Ax = b max_iter the number of iterations performed before the tolerance was reached tol the residual after the final iteration NOTE
pcg is an iterative template routine. pcg follows the algorithm described on p. 15 in @quotation Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition, R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. Van der Vorst, SIAM, 1994, ftp.netlib.org/templates/tem- plates.ps. @end quotation The present implementation is inspired from IML++ 1.2 iterative method library, http://math.nist.gov/iml++. IMPLEMENTATION
template <class Matrix, class Vector, class Vector2, class Preconditioner, class Real, class Size> int pcg(const Matrix &A, Vector &x, const Vector2 &Mb, const Preconditioner &M, Size &max_iter, Real &tol, odiststream *p_derr = 0, std::string label = "cg") { Vector b = M.solve(Mb); Real norm2_b = dot(Mb,b); if (norm2_b == Real(0)) norm2_b = 1; Vector Mr = Mb - A*x; Real norm2_r = 0; if (p_derr) (*p_derr) << "[" << label << "] #iteration residue" << std::endl; Vector p; for (Size n = 0; n <= max_iter; n++) { Vector r = M.solve(Mr); Real prev_norm2_r = norm2_r; norm2_r = dot(Mr, r); if (p_derr) (*p_derr) << "[" << label << "] " << n << " " << ::sqrt(norm2_r/norm2_b) << std::endl; if (norm2_r <= sqr(tol)*norm2_b) { tol = ::sqrt(norm2_r/norm2_b); max_iter = n; return 0; } if (n == 0) { p = r; } else { Real beta = norm2_r/prev_norm2_r; p = r + beta*p; } Vector Mq = A*p; Real alpha = norm2_r/dot(Mq, p); x += alpha*p; Mr -= alpha*Mq; } tol = ::sqrt(norm2_r/norm2_b); return 1; } rheolef-6.1 rheolef-6.1 pcg(4rheolef)
Man Page