Ottawa Linux Symposium 10, Day 1


 
Thread Tools Search this Thread
Special Forums News, Links, Events and Announcements UNIX and Linux RSS News Ottawa Linux Symposium 10, Day 1
# 1  
Old 07-24-2008
Ottawa Linux Symposium 10, Day 1

07-24-2008 08:00 AM
The tenth annual Ottawa Linux Symposium kicked off Wednesday in Canada's capital, just a few blocks from the country's parliament building, in a conference centre in the midst of being torn down. The symposium started with the traditional State of the Kernel address, this year by Matthew Wilcox. Among the dozens of talks and plenaries held the first day was kernel wireless maintainer John Linville's Tux on the Air: the State of Linux Wireless Networking.



Source...
Login or Register to Ask a Question

Previous Thread | Next Thread

3 More Discussions You Might Find Interesting

1. Cybersecurity

CVE_2015_1692-1 is that an UNIX / Linux day zero exploit number?

I can't imagine they number day zero exploits all through the open source software, like a CVE number can be for GIMP, LIBREOFFICE, (Ubuntu) LINUX, FireFox etc. Could be an exploit of LINUX through FireFox, since its an HTML exploit? One LINUX exploit I know has an CVE number (the exploit... (0 Replies)
Discussion started by: galien8
0 Replies

2. UNIX and Linux Applications

Day of week different in windows and Linux

Hi all, My program is getting date from database (oracle) and am getting that date's day of week also. In windows its giving one number and different in linux ;) For Example: 30 - Jun - 2009 Am getting 2 in windows and 3 in Linux. Am not understanding whats going wrong.. Am... (3 Replies)
Discussion started by: rajinavaneethan
3 Replies

3. UNIX and Linux Applications

How to find 'Day of week' in Linux system

Hi All, I want to find a day of week for the Linux system. can some one help me on this.. Thanks in advance, Raji. (2 Replies)
Discussion started by: rajinavaneethan
2 Replies
Login or Register to Ask a Question
FUTEX(7)						     Linux Programmer's Manual							  FUTEX(7)

NAME
futex - fast user-space locking SYNOPSIS
#include <linux/futex.h> DESCRIPTION
The Linux kernel provides futexes ("Fast user-space mutexes") as a building block for fast user-space locking and semaphores. Futexes are very basic and lend themselves well for building higher level locking abstractions such as POSIX mutexes. This page does not set out to document all design decisions but restricts itself to issues relevant for application and library develop- ment. Most programmers will in fact not be using futexes directly but instead rely on system libraries built on them, such as the NPTL pthreads implementation. A futex is identified by a piece of memory which can be shared between different processes. In these different processes, it need not have identical addresses. In its bare form, a futex has semaphore semantics; it is a counter that can be incremented and decremented atomi- cally; processes can wait for the value to become positive. Futex operation is entirely user space for the noncontended case. The kernel is involved only to arbitrate the contended case. As any sane design will strive for noncontention, futexes are also optimized for this situation. In its bare form, a futex is an aligned integer which is touched only by atomic assembler instructions. Processes can share this integer using mmap(2), via shared memory segments or because they share memory space, in which case the application is commonly called multi- threaded. Semantics Any futex operation starts in user space, but it may be necessary to communicate with the kernel using the futex(2) system call. To "up" a futex, execute the proper assembler instructions that will cause the host CPU to atomically increment the integer. Afterward, check if it has in fact changed from 0 to 1, in which case there were no waiters and the operation is done. This is the noncontended case which is fast and should be common. In the contended case, the atomic increment changed the counter from -1 (or some other negative number). If this is detected, there are waiters. User space should now set the counter to 1 and instruct the kernel to wake up any waiters using the FUTEX_WAKE operation. Waiting on a futex, to "down" it, is the reverse operation. Atomically decrement the counter and check if it changed to 0, in which case the operation is done and the futex was uncontended. In all other circumstances, the process should set the counter to -1 and request that the kernel wait for another process to up the futex. This is done using the FUTEX_WAIT operation. The futex(2) system call can optionally be passed a timeout specifying how long the kernel should wait for the futex to be upped. In this case, semantics are more complex and the programmer is referred to futex(2) for more details. The same holds for asynchronous futex wait- ing. VERSIONS
Initial futex support was merged in Linux 2.5.7 but with different semantics from those described above. Current semantics are available from Linux 2.5.40 onward. NOTES
To reiterate, bare futexes are not intended as an easy to use abstraction for end-users. Implementors are expected to be assembly literate and to have read the sources of the futex user-space library referenced below. This man page illustrates the most common use of the futex(2) primitives: it is by no means the only one. SEE ALSO
futex(2) Fuss, Futexes and Furwocks: Fast Userlevel Locking in Linux (proceedings of the Ottawa Linux Symposium 2002), futex example library, futex-*.tar.bz2 <ftp://ftp.kernel.org/pub/linux/kernel/people/rusty/>. COLOPHON
This page is part of release 3.53 of the Linux man-pages project. A description of the project, and information about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/. Linux 2012-08-05 FUTEX(7)