Query: dlasd5
OS: redhat
Section: l
Links: redhat man pages all man pages
Forums: unix linux community forum categories
Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar
DLASD5(l) ) DLASD5(l)NAMEDLASD5 - subroutine computes the square root of the I-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix diag( D ) * diag( D ) + RHO * Z * transpose(Z)SYNOPSISSUBROUTINE DLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK ) INTEGER I DOUBLE PRECISION DSIGMA, RHO DOUBLE PRECISION D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )PURPOSEThis subroutine computes the square root of the I-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix diag( D ) * diag( D ) + RHO * Z * transpose(Z) . The diagonal entries in the array D are assumed to satisfy 0 <= D(i) < D(j) for i < j . We also assume RHO > 0 and that the Euclidean norm of the vector Z is one.ARGUMENTSI (input) INTEGER The index of the eigenvalue to be computed. I = 1 or I = 2. D (input) DOUBLE PRECISION array, dimension ( 2 ) The original eigenvalues. We assume 0 <= D(1) < D(2). Z (input) DOUBLE PRECISION array, dimension ( 2 ) The components of the updating vector. DELTA (output) DOUBLE PRECISION array, dimension ( 2 ) Contains (D(j) - lambda_I) in its j-th component. The vector DELTA contains the information necessary to construct the eigenvec- tors. RHO (input) DOUBLE PRECISION The scalar in the symmetric updating formula. DSIGMA (output) DOUBLE PRECISION The computed lambda_I, the I-th updated eigenvalue. WORK (workspace) DOUBLE PRECISION array, dimension ( 2 ) WORK contains (D(j) + sigma_I) in its j-th component.FURTHER DETAILSBased on contributions by Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA LAPACK version 3.0 15 June 2000 DLASD5(l)
Related Man Pages |
---|
dlaed5(l) - redhat |
slasd5(l) - redhat |
dlaed5(3) - debian |
dlaed5(3) - centos |
slasd5(3) - centos |
Similar Topics in the Unix Linux Community |
---|
user diag ?? |