php man page for svm

Query: svm

OS: php

Section: 3

Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar

SVM(3)									 1								    SVM(3)

The SVM class

INTRODUCTION
CLASS SYNOPSIS
SVM SVM Constants o const integer$SVM::C_SVC0 o const integer$SVM::NU_SVC1 o const integer$SVM::ONE_CLASS2 o const integer$SVM::EPSILON_SVR3 o const integer$SVM::NU_SVR4 o const integer$SVM::KERNEL_LINEAR0 o const integer$SVM::KERNEL_POLY1 o const integer$SVM::KERNEL_RBF2 o const integer$SVM::KERNEL_SIGMOID3 o const integer$SVM::KERNEL_PRECOMPUTED4 o const integer$SVM::OPT_TYPE101 o const integer$SVM::OPT_KERNEL_TYPE102 o const integer$SVM::OPT_DEGREE103 o const integer$SVM::OPT_SHRINKING104 o const integer$SVM::OPT_PROPABILITY105 o const integer$SVM::OPT_GAMMA201 o const integer$SVM::OPT_NU202 o const integer$SVM::OPT_EPS203 o const integer$SVM::OPT_P204 o const integer$SVM::OPT_COEF_ZERO205 o const integer$SVM::OPT_C206 o const integer$SVM::OPT_CACHE_SIZE207 Methods o public SVM::__construct (void ) o public float svm::crossvalidate (array $problem, int $number_of_folds) o public array SVM::getOptions (void ) o public bool SVM::setOptions (array $params) o public SVMModel svm::train (array $problem, [array $weights])
PREDEFINED CONSTANTS
SVM CONSTANTS
o SVM::C_SVC -The basic C_SVC SVM type. The default, and a good starting point o SVM::NU_SVC -The NU_SVC type uses a different, more flexible, error weighting o SVM::ONE_CLASS -One class SVM type. Train just on a single class, using outliers as negative examples o SVM::EPSILON_SVR -A SVM type for regression (predicting a value rather than just a class) o SVM::NU_SVR -A NU style SVM regression type o SVM::KERNEL_LINEAR -A very simple kernel, can work well on large document classification problems o SVM::KERNEL_POLY -A polynomial kernel o SVM::KERNEL_RBF -The common Gaussian RBD kernel. Handles non-linear problems well and is a good default for classification o SVM::KERNEL_SIGMOID -A kernel based on the sigmoid function. Using this makes the SVM very similar to a two layer sigmoid based neural network o SVM::KERNEL_PRECOMPUTED -A precomputed kernel - currently unsupported. o SVM::OPT_TYPE -The options key for the SVM type o SVM::OPT_KERNEL_TYPE -The options key for the kernel type o SVM::OPT_DEGREE - o SVM::OPT_SHRINKING -Training parameter, boolean, for whether to use the shrinking heuristics o SVM::OPT_PROBABILITY -Training parameter, boolean, for whether to collect and use probability estimates o SVM::OPT_GAMMA -Algorithm parameter for Poly, RBF and Sigmoid kernel types. o SVM::OPT_NU -The option key for the nu parameter, only used in the NU_ SVM types o SVM::OPT_EPS -The option key for the Epsilon parameter, used in epsilon regression o SVM::OPT_P -Training parameter used by Episilon SVR regression o SVM::OPT_COEF_ZERO -Algorithm parameter for poly and sigmoid kernels o SVM::OPT_C -The option for the cost parameter that controls tradeoff between errors and generality - effectively the penalty for misclassifying training examples. o SVM::OPT_CACHE_SIZE -Memory cache size, in MB PHP Documentation Group SVM(3)
Related Man Pages
msvmocas(1) - debian
svm-train(1) - debian
datetimezone(3) - php
gendergender(3) - php
varnishlog(3) - php
Similar Topics in the Unix Linux Community
how to increase size of the root partition
Removing Disk from SVM
SVM question
Install boot required in SVM ??
How to create metadb with zpool in Solaris 11