Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

glmultmatrixf(3g) [xfree86 man page]

GLMULTMATRIX(3G)														  GLMULTMATRIX(3G)

NAME
glMultMatrixd, glMultMatrixf - multiply the current matrix with the specified matrix C SPECIFICATION
void glMultMatrixd( const GLdouble *m ) void glMultMatrixf( const GLfloat *m ) PARAMETERS
m Points to 16 consecutive values that are used as the elements of a 4x4 column-major matrix. DESCRIPTION
glMultMatrix multiplies the current matrix with the one specified using m, and replaces the current matrix with the product. The current matrix is determined by the current matrix mode (see glMatrixMode). It is either the projection matrix, modelview matrix, or the texture matrix. EXAMPLES
If the current matrix is C, and the coordinates to be transformed are, v=(v[0],v[1],v[2],v[3]). Then the current transformation is Cxv, or c[0] c[4] c[8] c[12] v[0] (c[1] c[5] c[9] c[13])x(v[1]) c[2] c[6] c[10] c[14] v[2] c[3] c[7] c[11] c[15] v[3] Calling glMultMatrix with an argument of m=m[0],m[1],...,m[15] replaces the current transformation with (CxM)xv, or c[0] c[4] c[8] c[12] m[0] m[4] m[8] m[12] v[0] (c[1] c[5] c[9] c[13])x(m[1] m[5] m[9] m[13])x(v[1]) c[2] c[6] c[10] c[14] m[2] m[6] m[10] m[14] v[2] c[3] c[7] c[11] c[15] m[3] m[7] m[11] m[15] v[3] Where 'x' denotes matrix multiplication, and v is represented as a 4x1 matrix. NOTES
While the elements of the matrix may be specified with single or double precision, the GL may store or operate on these values in less than single precision. In many computer languages 4x4 arrays are represented in row-major order. The transformations just described represent these matrices in column-major order. The order of the multiplication is important. For example, if the current transformation is a rotation, and glMultMatrix is called with a translation matrix, the translation is done directly on the coordinates to be transformed, while the rotation is done on the results of that translation. ERRORS
GL_INVALID_OPERATION is generated if glMultMatrix is executed between the execution of glBegin and the corresponding execution of glEnd. ASSOCIATED GETS
glGet with argument GL_MATRIX_MODE glGet with argument GL_COLOR_MATRIX glGet with argument GL_MODELVIEW_MATRIX glGet with argument GL_PROJECTION_MATRIX glGet with argument GL_TEXTURE_MATRIX SEE ALSO
glLoadIdentity(3G), glLoadMatrix(3G), glMatrixMode(3G), glPushMatrix(3G) GLMULTMATRIX(3G)

Check Out this Related Man Page

GLMULTMATRIX(3G)														  GLMULTMATRIX(3G)

NAME
glMultMatrixd, glMultMatrixf - multiply the current matrix with the specified matrix C SPECIFICATION
void glMultMatrixd( const GLdouble *m ) void glMultMatrixf( const GLfloat *m ) PARAMETERS
m Points to 16 consecutive values that are used as the elements of a 4x4 column-major matrix. DESCRIPTION
glMultMatrix multiplies the current matrix with the one specified using m, and replaces the current matrix with the product. The current matrix is determined by the current matrix mode (see glMatrixMode). It is either the projection matrix, modelview matrix, or the texture matrix. EXAMPLES
If the current matrix is C, and the coordinates to be transformed are, v=(v[0],v[1],v[2],v[3]). Then the current transformation is Cxv, or c[0] c[4] c[8] c[12] v[0] (c[1] c[5] c[9] c[13])x(v[1]) c[2] c[6] c[10] c[14] v[2] c[3] c[7] c[11] c[15] v[3] Calling glMultMatrix with an argument of m=m[0],m[1],...,m[15] replaces the current transformation with (CxM)xv, or c[0] c[4] c[8] c[12] m[0] m[4] m[8] m[12] v[0] (c[1] c[5] c[9] c[13])x(m[1] m[5] m[9] m[13])x(v[1]) c[2] c[6] c[10] c[14] m[2] m[6] m[10] m[14] v[2] c[3] c[7] c[11] c[15] m[3] m[7] m[11] m[15] v[3] Where 'x' denotes matrix multiplication, and v is represented as a 4x1 matrix. NOTES
While the elements of the matrix may be specified with single or double precision, the GL may store or operate on these values in less than single precision. In many computer languages 4x4 arrays are represented in row-major order. The transformations just described represent these matrices in column-major order. The order of the multiplication is important. For example, if the current transformation is a rotation, and glMultMatrix is called with a translation matrix, the translation is done directly on the coordinates to be transformed, while the rotation is done on the results of that translation. ERRORS
GL_INVALID_OPERATION is generated if glMultMatrix is executed between the execution of glBegin and the corresponding execution of glEnd. ASSOCIATED GETS
glGet with argument GL_MATRIX_MODE glGet with argument GL_COLOR_MATRIX glGet with argument GL_MODELVIEW_MATRIX glGet with argument GL_PROJECTION_MATRIX glGet with argument GL_TEXTURE_MATRIX SEE ALSO
glLoadIdentity(3G), glLoadMatrix(3G), glMatrixMode(3G), glPushMatrix(3G) GLMULTMATRIX(3G)
Man Page