Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

ata_slave_link_init(9) [suse man page]

ATA_SLAVE_LINK_INIT(9)						  libata Library					    ATA_SLAVE_LINK_INIT(9)

ata_slave_link_init - initialize slave link SYNOPSIS
int ata_slave_link_init(struct ata_port * ap); ARGUMENTS
ap port to initialize slave link for DESCRIPTION
Create and initialize slave link for ap. This enables slave link handling on the port. In libata, a port contains links and a link contains devices. There is single host link but if a PMP is attached to it, there can be multiple fan-out links. On SATA, there's usually a single device connected to a link but PATA and SATA controllers emulating TF based interface can have two - master and slave. However, there are a few controllers which don't fit into this abstraction too well - SATA controllers which emulate TF interface with both master and slave devices but also have separate SCR register sets for each device. These controllers need separate links for physical link handling (e.g. onlineness, link speed) but should be treated like a traditional M/S controller for everything else (e.g. command issue, softreset). slave_link is libata's way of handling this class of controllers without impacting core layer too much. For anything other than physical link handling, the default host link is used for both master and slave. For physical link handling, separate ap->slave_link is used. All dirty details are implemented inside libata core layer. From LLD's POV, the only difference is that prereset, hardreset and postreset are called once more for the slave link, so the reset sequence looks like the following. prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> softreset(M) -> postreset(M) -> postreset(S) Note that softreset is called only for the master. Softreset resets both M/S by definition, so SRST on master should handle both (the standard method will work just fine). LOCKING
Should be called before host is registered. RETURNS
0 on success, -errno on failure. AUTHOR
Jeff Garzik Author. COPYRIGHT
Kernel Hackers Manual 2.6. July 2010 ATA_SLAVE_LINK_INIT(9)

Check Out this Related Man Page

pts(7)							 Miscellaneous Information Manual						    pts(7)

pts - STREAMS slave pty (pseudo-terminal) driver SYNOPSIS
A pseudo-terminal (pty) consists of a tightly-coupled pair of character devices, called the master device and slave device. The pty master and slave device drivers work together to simulate a terminal connection where the master provides a connection to the pseudo terminal server process and the slave provides a terminal device special file access for the terminal application processes, as depicted below: ---------------- | pty functions | Application <--> |----------------| <--> Server Processes | Slave | Master | Process | (pts) | (ptm) | ---------------- The slave driver, with (STREAMS pty emulation module) and (STREAMS line discipline module) pushed on top (not shown for simplicity), pro- vides a terminal interface as described in termio(7). Whereas devices that provide the terminal interface described in termio(7) have a hardware device behind them; in contrast, the slave device has another process manipulating it through the master side of the pty. Data written on the master device is given to the slave device as input and data written on the slave device is presented as input on the master device. In order to use the STREAMS pty subsystem, a node for the master pty driver and N number of slave pty devices must be installed (see ptm(7) for more details on master pty). When the master device is opened, the corresponding slave device is automatically locked out. No user can open that slave device until its permissions are changed (via the function) and the device is unlocked (via the function). The user then call the function to obtain the name of the slave device and invoke the system call to open the slave device. Although only one open is allowed on a master device, multiple opens are allowed on the slave device. After both the master and slave have been opened, the user has two file descriptors which represent the end points of a full duplex connection composed of two streams that are automatically con- nected by the master and slave devices when they are opened. The user may then push the desired modules (for example, and on for terminal semantics and on for Packet Mode feature). The master and slave drivers pass all STREAMS messages to their adjacent drivers. Only the message needs some special processing because the read queue of the master is connected to the write queue of the slave and vice versa. For example, the flag is changed to flag and vice versa whenever a message travels across the master-slave link. When the master device is closed, an message is sent to the corre- sponding slave device which will render that slave device unusable. The process on the slave side gets the errno when attempting a system call to the slave device file but it will be able to read any data remaining in the slave stream. Finally, when all the data has been read, the system call will return 0, indicating that the slave can no longer be used. On the last close of the slave device, a zero-length message is sent to the corresponding master device. When the application on the master side issues a read(2) or getmsg(2) system calls, a 0 (zero) is returned. The user of the master device may decide to close the master device file, which dismantles the stream on the master side. If the master device remains opened, the corresponding slave device can be opened and used again by another user. EXAMPLES
The following example shows how a STREAMS pty master and slave devices are typically opened. AUTHOR
was developed by HP and OSF. FILES
Streams pty master clone device Streams pty slave devices (0 <= N < where is a kernel tunable parameter which can be changed via SAM (see sam(1M)). SEE ALSO
insf(1M), sam(1M), getmsg(2), ioctl(2), open(2), read(2), write(2), grantpt(3C), ptsname(3C), unlockpt(3C), ldterm(7), ptem(7), ptm(7), streamio(7), termio(7). pts(7)
Man Page

Featured Tech Videos