Home Man
Today's Posts

Linux & Unix Commands - Search Man Pages

RedHat 9 (Linux i386) - man page for bind (redhat section n)

bind(n) 					 Tk Built-In Commands					      bind(n)


bind - Arrange for X events to invoke Tcl scripts
bind tag bind tag sequence bind tag sequence script bind tag sequence +script _________________________________________________________________
The bind command associates Tcl scripts with X events. If all three arguments are specified, bind will arrange for script (a Tcl script) to be evaluated whenever the event(s) given by sequence occur in the win- dow(s) identified by tag. If script is prefixed with a ``+'', then it is appended to any existing binding for sequence; otherwise script replaces any existing binding. If script is an empty string then the current binding for sequence is destroyed, leaving sequence unbound. In all of the cases where a script argument is provided, bind returns an empty string. If sequence is specified without a script, then the script currently bound to sequence is returned, or an empty string is returned if there is no binding for sequence. If neither sequence nor script is specified, then the return value is a list whose elements are all the sequences for which there exist bindings for tag. The tag argument determines which window(s) the binding applies to. If tag begins with a dot, as in .a.b.c, then it must be the path name for a window; otherwise it may be an arbitrary string. Each window has an asso- ciated list of tags, and a binding applies to a particular window if its tag is among those specified for the window. Although the bindtags command may be used to assign an arbitrary set of binding tags to a window, the default binding tags provide the following behavior: If a tag is the name of an internal window the binding applies to that window. If the tag is the name of a toplevel window the binding applies to the toplevel window and all its internal windows. If the tag is the name of a class of widgets, such as Button, the binding applies to all widgets in that class; If tag has the value all, the binding applies to all windows in the application.
The sequence argument specifies a sequence of one or more event patterns, with optional white space between the patterns. Each event pattern may take one of three forms. In the simplest case it is a single printing | ASCII character, such as a or [. The character may not be a space character or the character <. This form of pattern matches a KeyPress event for the particular character. The second form of pattern is longer but more general. It has the following syntax: <modifier-modifier-type-detail> The entire event pattern is surrounded by angle brackets. Inside the angle brackets are zero or more modi- fiers, an event type, and an extra piece of information (detail) identifying a particular button or keysym. Any of the fields may be omitted, as long as at least one of type and detail is present. The fields must be separated by white space or dashes. | The third form of pattern is used to specify a user-defined, named virtual event. It has the following syn- | tax: | <<name>> | The entire virtual event pattern is surrounded by double angle brackets. Inside the angle brackets is the | user-defined name of the virtual event. Modifiers, such as Shift or Control, may not be combined with a vir- | tual event to modify it. Bindings on a virtual event may be created before the virtual event is defined, and | if the definition of a virtual event changes dynamically, all windows bound to that virtual event will respond | immediately to the new definition.
Modifiers consist of any of the following values: Control Mod2, M2 Shift Mod3, M3 Lock Mod4, M4 Button1, B1 Mod5, M5 Button2, B2 Meta, M Button3, B3 Alt Button4, B4 Double Button5, B5 Triple Mod1, M1 Quadruple Where more than one value is listed, separated by com- mas, the values are equivalent. Most of the modifiers have the obvious X meanings. For example, Button1 requires that button 1 be depressed when the event occurs. For a binding to match a given event, the modi- fiers in the event must include all of those specified in the event pattern. An event may also contain addi- tional modifiers not specified in the binding. For example, if button 1 is pressed while the shift and con- trol keys are down, the pattern <Control-Button-1> will match the event, but <Mod1-Button-1> will not. If no modifiers are specified, then any combination of modifiers may be present in the event. Meta and M refer to whichever of the M1 through M5 modifiers is associated with the meta key(s) on the key- board (keysyms Meta_R and Meta_L). If there are no meta keys, or if they are not associated with any modi- fiers, then Meta and M will not match any events. Similarly, the Alt modifier refers to whichever modifier is associated with the alt key(s) on the keyboard (keysyms Alt_L and Alt_R). The Double, Triple and Quadruple modifiers are a convenience for specifying double mouse clicks and other repeated events. They cause a particular event pattern to be repeated 2, 3 or 4 times, and also place a time and space requirement on the sequence: for a sequence of events to match a Double, Triple or Quadruple pat- tern, all of the events must occur close together in time and without substantial mouse motion in between. For example, <Double-Button-1> is equivalent to <Button-1><Button-1> with the extra time and space require- ment.
The type field may be any of the standard X event types, with a few extra abbreviations. The type field will also accept a couple non-standard X event types that were added to better support the Macintosh and Windows platforms. Below is a list of all the valid types; where two names appear together, they are synonyms. Acti- vate Enter Map ButtonPress, Button Expose Motion ButtonRe- | lease FocusIn MouseWheel Circulate FocusOut Property Col- ormap Gravity Reparent Configure KeyPress, Key Unmap Deacti- vate KeyRelease Visibility Destroy Leave Most of the above events have the same fields and behaviors as events in the X Windowing system. You can find | more detailed descriptions of these events in any X window programming book. A couple of the events are | extensions to the X event system to support features unique to the Macintosh and Windows platforms. We pro- | vide a little more detail on these events here. These include: | Activate | Deactivate | These two events are sent to every sub-window of a toplevel when they change state. In addition to the | focus Window, the Macintosh platform and Windows platforms have a notion of an active window (which often | has but is not required to have the focus). On the Macintosh, widgets in the active window have a dif- | ferent appearance than widgets in deactive windows. The Activate event is sent to all the sub-windows in | a toplevel when it changes from being deactive to active. Likewise, the Deactive event is sent when the | window's state changes from active to deactive. There are no useful percent substitutions you would make | when binding to these events. | MouseWheel | Some mice on the Windows platform support a mouse wheel which is used for scrolling documents without | using the scrollbars. By rolling the wheel, the system will generate MouseWheel events that the applica- | tion can use to scroll. Like Key events the event is always routed to the window that currently has | focus. When the event is received you can use the %D substitution to get the delta field for the event | which is a integer value of motion that the mouse wheel has moved. The smallest value for which the sys- | tem will report is defined by the OS. On Windows 95 & 98 machines this value is at least 120 before it | is reported. However, higher resolution devices may be available in the future. The sign of the value | determines which direction your widget should scroll. Positive values should scroll up and negative val- | ues should scroll down. The last part of a long event specification is detail. In the case of a ButtonPress or ButtonRelease event, it is the number of a button (1-5). If a button number is given, then only an event on that particular button will match; if no button number is given, then an event on any button will match. Note: giving a specific button number is different than specifying a button modifier; in the first case, it refers to a button being pressed or released, while in the second it refers to some other button that is already depressed when the matching event occurs. If a button number is given then type may be omitted: if will default to ButtonPress. For example, the specifier <1> is equivalent to <ButtonPress-1>. If the event type is KeyPress or KeyRelease, then detail may be specified in the form of an X keysym. Keysyms are textual specifications for particular keys on the keyboard; they include all the alphanumeric ASCII char- acters (e.g. ``a'' is the keysym for the ASCII character ``a''), plus descriptions for non-alphanumeric char- acters (``comma'' is the keysym for the comma character), plus descriptions for all the non-ASCII keys on the keyboard (``Shift_L'' is the keysm for the left shift key, and ``F1'' is the keysym for the F1 function key, if it exists). The complete list of keysyms is not presented here; it is available in other X documentation and may vary from system to system. If necessary, you can use the %K notation described below to print out the keysym name for a particular key. If a keysym detail is given, then the type field may be omitted; it will default to KeyPress. For example, <Control-comma> is equivalent to <Control-KeyPress-comma>.
The script argument to bind is a Tcl script, which will be executed whenever the given event sequence occurs. Command will be executed in the same interpreter that the bind command was executed in, and it will run at global level (only global variables will be accessible). If script contains any % characters, then the script will not be executed directly. Instead, a new script will be generated by replacing each %, and the character following it, with information from the current event. The replacement depends on the character following the %, as defined in the list below. Unless otherwise indicated, the replacement string is the decimal value of the given field from the current event. Some of the substitutions are only valid for certain types of events; if they are used for other types of events the value substituted is undefined. %% Replaced with a single percent. %# The number of the last client request processed by the server (the serial field from the event). Valid for all event types. %a The above field from the event, formatted as a hexadecimal number. Valid only for Configure events. %b The number of the button that was pressed or released. Valid only for ButtonPress and ButtonRelease events. %c The count field from the event. Valid only for Expose events. %d The detail field from the event. The %d is replaced by a string identifying the detail. For Enter, Leave, FocusIn, and FocusOut events, the string will be one of the following: NotifyAncestor NotifyNonlinearVirtual NotifyDetailNone NotifyPointer NotifyInfe- rior NotifyPointerRoot NotifyNonlinear NotifyVirtual For events other than these, the substituted string is undefined. %f The focus field from the event (0 or 1). Valid only for Enter and Leave events. %h The height field from the event. Valid for the Configure and Expose events. | %k The keycode field from the event. Valid only for KeyPress and KeyRelease events. %m The mode field from the event. The substituted string is one of NotifyNormal, NotifyGrab, NotifyUngrab, or NotifyWhileGrabbed. Valid only for Enter, FocusIn, FocusOut, and Leave events. | %o The override_redirect field from the event. Valid only for Map, Reparent, and Configure events. %p The place field from the event, substituted as one of the strings PlaceOnTop or PlaceOnBottom. Valid only for Circulate events. %s The state field from the event. For ButtonPress, ButtonRelease, Enter, KeyPress, KeyRelease, Leave, and Motion events, a decimal string is substituted. For Visibility, one of the strings VisibilityUnobscured, VisibilityPartiallyObscured, and VisibilityFullyObscured is substituted. %t The time field from the event. Valid only for events that contain a time field. %w The width field from the event. Valid only for Configure and Expose events. | %x The x field from the event. Valid only for events containing an x field. %y The y field from the event. Valid only for events containing a y field. %A Substitutes the ASCII character corresponding to the event, or the empty string if the event doesn't cor- respond to an ASCII character (e.g. the shift key was pressed). XLookupString does all the work of translating from the event to an ASCII character. Valid only for KeyPress and KeyRelease events. %B The border_width field from the event. Valid only for Configure events. | %D | This reports the delta value of a MouseWheel event. The delta value represents the rotation units the | mouse wheel has been moved. On Windows 95 & 98 systems the smallest value for the delta is 120. Future | systems may support higher resolution values for the delta. The sign of the value represents the direc- | tion the mouse wheel was scrolled. %E The send_event field from the event. Valid for all event types. %K The keysym corresponding to the event, substituted as a textual string. Valid only for KeyPress and KeyRelease events. %N The keysym corresponding to the event, substituted as a decimal number. Valid only for KeyPress and KeyRelease events. %R The root window identifier from the event. Valid only for events containing a root field. %S The subwindow window identifier from the event, formatted as a hexadecimal number. Valid only for events containing a subwindow field. %T The type field from the event. Valid for all event types. %W The path name of the window to which the event was reported (the window field from the event). Valid for all event types. %X The x_root field from the event. If a virtual-root window manager is being used then the substituted value is the corresponding x-coordinate in the virtual root. Valid only for ButtonPress, ButtonRelease, KeyPress, KeyRelease, and Motion events. %Y The y_root field from the event. If a virtual-root window manager is being used then the substituted value is the corresponding y-coordinate in the virtual root. Valid only for ButtonPress, ButtonRelease, KeyPress, KeyRelease, and Motion events. The replacement string for a %-replacement is formatted as a proper Tcl list element. This means that it will be surrounded with braces if it contains spaces, or special characters such as $ and { may be preceded by backslashes. This guarantees that the string will be passed through the Tcl parser when the binding script is evaluated. Most replacements are numbers or well-defined strings such as Above; for these replacements no special formatting is ever necessary. The most common case where reformatting occurs is for the %A substitu- tion. For example, if script is insert %A and the character typed is an open square bracket, then the script actually executed will be insert \[ This will cause the insert to receive the original replacement string (open square bracket) as its first argu- ment. If the extra backslash hadn't been added, Tcl would not have been able to parse the script correctly.
It is possible for several bindings to match a given X event. If the bindings are associated with different tag's, then each of the bindings will be executed, in order. By default, a binding for the widget will be executed first, followed by a class binding, a binding for its toplevel, and an all binding. The bindtags command may be used to change this order for a particular window or to associate additional binding tags with the window. The continue and break commands may be used inside a binding script to control the processing of matching scripts. If continue is invoked, then the current binding script is terminated but Tk will continue process- ing binding scripts associated with other tag's. If the break command is invoked within a binding script, then that script terminates and no other scripts will be invoked for the event. | If more than one binding matches a particular event and they have the same tag, then the most specific binding | is chosen and its script is evaluated. The following tests are applied, in order, to determine which of sev- | eral matching sequences is more specific: (a) an event pattern that specifies a specific button or key is more | specific than one that doesn't; (b) a longer sequence (in terms of number of events matched) is more specific | than a shorter sequence; (c) if the modifiers specified in one pattern are a subset of the modifiers in | another pattern, then the pattern with more modifiers is more specific. (d) a virtual event whose physical | pattern matches the sequence is less specific than the same physical pattern that is not associated with a | virtual event. (e) given a sequence that matches two or more virtual events, one of the virtual events will | be chosen, but the order is undefined. | If the matching sequences contain more than one event, then tests (c)-(e) are applied in order from the most | recent event to the least recent event in the sequences. If these tests fail to determine a winner, then the | most recently registered sequence is the winner. | If there are two (or more) virtual events that are both triggered by the same sequence, and both of those vir- | tual events are bound to the same window tag, then only one of the virtual events will be triggered, and it | will be picked at random: | event add <<Paste>> <Control-y> | event add <<Paste>> <Button-2> | event add <<Scroll>> <Button-2> | bind Entry <<Paste>> {puts Paste} | bind Entry <<Scroll>> {puts Scroll} | If the user types Control-y, the <<Paste>> binding will be invoked, but if the user presses button 2 then one | of either the <<Paste>> or the <<Scroll>> bindings will be invoked, but exactly which one gets invoked is | undefined. If an X event does not match any of the existing bindings, then the event is ignored. An unbound event is not considered to be an error. MULTI-EVENT SEQUENCES AND IGNORED EVENTS When a sequence specified in a bind command contains more than one event pattern, then its script is executed whenever the recent events (leading up to and including the current event) match the given sequence. This means, for example, that if button 1 is clicked repeatedly the sequence <Double-ButtonPress-1> will match each button press but the first. If extraneous events that would prevent a match occur in the middle of an event sequence then the extraneous events are ignored unless they are KeyPress or ButtonPress events. For example, <Double-ButtonPress-1> will match a sequence of presses of button 1, even though there will be ButtonRelease events (and possibly Motion events) between the ButtonPress events. Furthermore, a KeyPress event may be pre- ceded by any number of other KeyPress events for modifier keys without the modifier keys preventing a match. For example, the event sequence aB will match a press of the a key, a release of the a key, a press of the Shift key, and a press of the b key: the press of Shift is ignored because it is a modifier key. Finally, if several Motion events occur in a row, only the last one is used for purposes of matching binding sequences.
If an error occurs in executing the script for a binding then the bgerror mechanism is used to report the error. The bgerror command will be executed at global level (outside the context of any Tcl procedure).
bgerror, keysyms
form, manual Tk 8.0 bind(n)

All times are GMT -4. The time now is 09:04 PM.

Unix & Linux Forums Content Copyrightę1993-2018. All Rights Reserved.
Show Password