Linux & Unix Commands - Search Man Pages

ZGEBD2(l)) ZGEBD2(l)NAMEZGEBD2 - reduce a complex general m by n matrix A to upper or lower real bidiagonal form B by a unitary transformationSYNOPSISSUBROUTINE ZGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO ) INTEGER INFO, LDA, M, N DOUBLE PRECISION D( * ), E( * ) COMPLEX*16 A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )PURPOSEZGEBD2 reduces a complex general m by n matrix A to upper or lower real bidiagonal form B by a unitary transformation: Q' * A * P = B. If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.ARGUMENTSM (input) INTEGER The number of rows in the matrix A. M >= 0. N (input) INTEGER The number of columns in the matrix A. N >= 0. A (input/output) COMPLEX*16 array, dimension (LDA,N) On entry, the m by n general matrix to be reduced. On exit, if m >= n, the diago- nal and the first superdiagonal are overwritten with the upper bidiagonal matrix B; the elements below the diagonal, with the array TAUQ, represent the unitary matrix Q as a product of elementary reflectors, and the elements above the first superdiagonal, with the array TAUP, represent the unitary matrix P as a product of elementary reflectors; if m < n, the diagonal and the first subdiagonal are over- written with the lower bidiagonal matrix B; the elements below the first subdiago- nal, with the array TAUQ, represent the unitary matrix Q as a product of elemen- tary reflectors, and the elements above the diagonal, with the array TAUP, repre- sent the unitary matrix P as a product of elementary reflectors. See Further Details. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). D (output) DOUBLE PRECISION array, dimension (min(M,N)) The diagonal elements of the bidiagonal matrix B: D(i) = A(i,i). E (output) DOUBLE PRECISION array, dimension (min(M,N)-1) The off-diagonal elements of the bidiagonal matrix B: if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. TAUQ (output) COMPLEX*16 array dimension (min(M,N)) The scalar factors of the elementary reflectors which represent the unitary matrix Q. See Further Details. TAUP (output) COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors which represent the unitary matrix P. See Further Details. WORK (workspace) COMPLEX*16 array, dimension (max(M,N)) INFO (output) INTEGER = 0: successful exit < 0: if INFO =, the i-th argument had an illegal value.-iFURTHER DETAILSThe matrices Q and P are represented as products of elementary reflectors: If m >= n, Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1) Each H(i) and G(i) has the form: H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' where tauq and taup are complex scalars, and v and u are complex vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i). If m < n, Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m) Each H(i) and G(i) has the form: H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' where tauq and taup are complex scalars, v and u are complex vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). The contents of A on exit are illustrated by the following examples: m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) ( v1 v2 v3 v4 v5 ) where d and e denote diagonal and off-diagonal elements of B, vi denotes an element of the vector defining H(i), and ui an element of the vector defining G(i).LAPACK version 3.015 June 2000 ZGEBD2(l)

All times are GMT -4. The time now is 08:59 AM.