Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

sppsv(l) [redhat man page]

SPPSV(l)								 )								  SPPSV(l)

NAME
SPPSV - compute the solution to a real system of linear equations A * X = B, SYNOPSIS
SUBROUTINE SPPSV( UPLO, N, NRHS, AP, B, LDB, INFO ) CHARACTER UPLO INTEGER INFO, LDB, N, NRHS REAL AP( * ), B( LDB, * ) PURPOSE
SPPSV computes the solution to a real system of linear equations A * X = B, where A is an N-by-N symmetric positive definite matrix stored in packed format and X and B are N-by-NRHS matrices. The Cholesky decomposition is used to factor A as A = U**T* U, if UPLO = 'U', or A = L * L**T, if UPLO = 'L', where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of A is then used to solve the system of equa- tions A * X = B. ARGUMENTS
UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. AP (input/output) REAL array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the symmetric matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. See below for further details. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, in the same storage format as A. B (input/output) REAL array, dimension (LDB,NRHS) On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the leading minor of order i of A is not positive definite, so the factorization could not be completed, and the solution has not been computed. FURTHER DETAILS
The packed storage scheme is illustrated by the following example when N = 4, UPLO = 'U': Two-dimensional storage of the symmetric matrix A: a11 a12 a13 a14 a22 a23 a24 a33 a34 (aij = conjg(aji)) a44 Packed storage of the upper triangle of A: AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] LAPACK version 3.0 15 June 2000 SPPSV(l)

Check Out this Related Man Page

sppsv.f(3)							      LAPACK								sppsv.f(3)

NAME
sppsv.f - SYNOPSIS
Functions/Subroutines subroutine sppsv (UPLO, N, NRHS, AP, B, LDB, INFO) SPPSV computes the solution to system of linear equations A * X = B for OTHER matrices Function/Subroutine Documentation subroutine sppsv (characterUPLO, integerN, integerNRHS, real, dimension( * )AP, real, dimension( ldb, * )B, integerLDB, integerINFO) SPPSV computes the solution to system of linear equations A * X = B for OTHER matrices Purpose: SPPSV computes the solution to a real system of linear equations A * X = B, where A is an N-by-N symmetric positive definite matrix stored in packed format and X and B are N-by-NRHS matrices. The Cholesky decomposition is used to factor A as A = U**T* U, if UPLO = 'U', or A = L * L**T, if UPLO = 'L', where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of A is then used to solve the system of equations A * X = B. Parameters: UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. AP AP is REAL array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the symmetric matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. See below for further details. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, in the same storage format as A. B B is REAL array, dimension (LDB,NRHS) On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the leading minor of order i of A is not positive definite, so the factorization could not be completed, and the solution has not been computed. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: The packed storage scheme is illustrated by the following example when N = 4, UPLO = 'U': Two-dimensional storage of the symmetric matrix A: a11 a12 a13 a14 a22 a23 a24 a33 a34 (aij = conjg(aji)) a44 Packed storage of the upper triangle of A: AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] Definition at line 145 of file sppsv.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 sppsv.f(3)
Man Page