Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

dgerq2(l) [redhat man page]

DGERQ2(l)								 )								 DGERQ2(l)

NAME
DGERQ2 - compute an RQ factorization of a real m by n matrix A SYNOPSIS
SUBROUTINE DGERQ2( M, N, A, LDA, TAU, WORK, INFO ) INTEGER INFO, LDA, M, N DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) PURPOSE
DGERQ2 computes an RQ factorization of a real m by n matrix A: A = R * Q. ARGUMENTS
M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the m by n matrix A. On exit, if m <= n, the upper triangle of the subarray A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; if m >= n, the elements on and above the (m-n)-th subdiagonal contain the m by n upper trapezoidal matrix R; the remaining elements, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details). LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK (workspace) DOUBLE PRECISION array, dimension (M) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value FURTHER DETAILS
The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i). LAPACK version 3.0 15 June 2000 DGERQ2(l)

Check Out this Related Man Page

dgerq2.f(3)							      LAPACK							       dgerq2.f(3)

NAME
dgerq2.f - SYNOPSIS
Functions/Subroutines subroutine dgerq2 (M, N, A, LDA, TAU, WORK, INFO) DGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm. Function/Subroutine Documentation subroutine dgerq2 (integerM, integerN, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( * )TAU, double precision, dimension( * )WORK, integerINFO) DGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm. Purpose: DGERQ2 computes an RQ factorization of a real m by n matrix A: A = R * Q. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the m by n matrix A. On exit, if m <= n, the upper triangle of the subarray A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; if m >= n, the elements on and above the (m-n)-th subdiagonal contain the m by n upper trapezoidal matrix R; the remaining elements, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is DOUBLE PRECISION array, dimension (M) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i). Definition at line 124 of file dgerq2.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 dgerq2.f(3)
Man Page