# posix2time(3) [osx man page]

TIME2POSIX(3) BSD Library Functions Manual TIME2POSIX(3)NAME

time2posix, posix2timeconvert seconds since the Epoch--LIBRARY

Standard C Library (libc, -lc)SYNOPSIS

#include <time.h> time_t time2posix(time_t t); time_t posix2time(time_t t);DESCRIPTION

IEEE Std 1003.1-1988 (``POSIX.1'') legislates that a time_t value of 536457599 shall correspond to "Wed Dec 31 23:59:59 GMT 1986." This effectively implies that POSIX time_t's cannot include leap seconds and, therefore, that the system time must be adjusted as each leap occurs. If the time package is configured with leap-second support enabled, however, no such adjustment is needed and time_t values continue to increase over leap events (as a true `seconds since...' value). This means that these values will differ from those required by POSIX by the net number of leap seconds inserted since the Epoch. Typically this is not a problem as the type time_t is intended to be (mostly) opaque--time_t values should only be obtained-from and passed- to functions such as time(3), localtime(3), mktime(3) and difftime(3). However, IEEE Std 1003.1-1988 (``POSIX.1'') gives an arithmetic expression for directly computing a time_t value from a given date/time, and the same relationship is assumed by some (usually older) appli- cations. Any programs creating/dissecting time_t's using such a relationship will typically not handle intervals over leap seconds cor- rectly. The time2posix() and posix2time() functions are provided to address this time_t mismatch by converting between local time_t values and their POSIX equivalents. This is done by accounting for the number of time-base changes that would have taken place on a POSIX system as leap sec- onds were inserted or deleted. These converted values can then be used in lieu of correcting the older applications, or when communicating with POSIX-compliant systems. The time2posix() function is single-valued. That is, every local time_t corresponds to a single POSIX time_t. The posix2time() function is less well-behaved: for a positive leap second hit the result is not unique, and for a negative leap second hit the corresponding POSIX time_t does not exist so an adjacent value is returned. Both of these are good indicators of the inferiority of the POSIX representation. The following table summarizes the relationship between time_t and its conversion to, and back from, the POSIX representation over the leap second inserted at the end of June, 1993. DATE TIME T X=time2posix(T) posix2time(X) 93/06/30 23:59:59 A+0 B+0 A+0 93/06/30 23:59:60 A+1 B+1 A+1 or A+2 93/07/01 00:00:00 A+2 B+1 A+1 or A+2 93/07/01 00:00:01 A+3 B+2 A+3 A leap second deletion would look like... DATE TIME T X=time2posix(T) posix2time(X) ??/06/30 23:59:58 A+0 B+0 A+0 ??/07/01 00:00:00 A+1 B+2 A+1 ??/07/01 00:00:01 A+2 B+3 A+2 [Note: posix2time(B+1) => A+0 or A+1] If leap-second support is not enabled, local time_t's and POSIX time_t's are equivalent, and both time2posix() and posix2time() degenerate to the identity function.SEE ALSO

difftime(3), localtime(3), mktime(3), time(3)BSD

September 11, 2005 BSD

## Check Out this Related Man Page

TIME2POSIX(3) BSD Library Functions Manual TIME2POSIX(3)NAME

time2posix, time2posix_z, posix2time, posix2time_z,convert seconds since the Epoch--LIBRARY

Standard C Library (libc, -lc)SYNOPSIS

#include <time.h> time_t time2posix(time_t t); time_t time2posix_z(const timezone_t tz, time_t t); time_t posix2time(time_t t); time_t posix2time_z(const timezone_t tz, time_t t);DESCRIPTION

IEEE Std 1003.1 (``POSIX.1'') legislates that a time_t value of 536457599 shall correspond to Wed Dec 31 23:59:59 UTC 1986. This effectively implies that POSIX time_t's cannot include leap seconds and, therefore, that the system time must be adjusted as each leap occurs. If the time package is configured with leap-second support enabled, however, no such adjustment is needed and time_t values continue to increase over leap events (as a true `seconds since...' value). This means that these values will differ from those required by POSIX by the net number of leap seconds inserted since the Epoch. Typically this is not a problem as the type time_t is intended to be (mostly) opaquetime_t values should only be obtained-from and passed-to functions such as time(3), localtime(3), localtime_r(3), localtime_rz(3), mktime(3), mktime_z(3), and difftime(3). However, POSIX gives an arithmetic expression for directly computing a time_t value from a given date/time, and the same relationship is assumed by some (usually older) applications. Any programs creating/dissecting time_t's using such a relationship will typically not handle intervals over leap seconds correctly. The time2posix(), time2posix_z(), posix2time(), and posix2time_z() functions are provided to address this time_t mismatch by converting between local time_t values and their POSIX equivalents. This is done by accounting for the number of time-base changes that would have taken place on a POSIX system as leap seconds were inserted or deleted. These converted values can then be used in lieu of correcting the older applications, or when communicating with POSIX-compliant systems. time2posix() and time2posix_z() are single-valued. That is, every local time_t corresponds to a single POSIX time_t. posix2time() and posix2time() are less well-behaved: for a positive leap second hit the result is not unique, and for a negative leap second hit the corre- sponding POSIX time_t doesn't exist so an adjacent value is returned. Both of these are good indicators of the inferiority of the POSIX rep- resentation. The ``z'' variants of the two functions behave exactly like their counterparts, but they operate in the given tz argument which was previ- ously allocated using tzalloc(3) and are re-entrant. The following table summarizes the relationship between a time_t and its conversion to, and back from, the POSIX representation over the leap second inserted at the end of June, 1993. DATE TIME T X=time2posix(T) posix2time(X) 93/06/30 23:59:59 A+0 B+0 A+0 93/06/30 23:59:60 A+1 B+1 A+1 or A+2 93/07/01 00:00:00 A+2 B+1 A+1 or A+2 93/07/01 00:00:01 A+3 B+2 A+3 A leap second deletion would look like... DATE TIME T X=time2posix(T) posix2time(X) ??/06/30 23:59:58 A+0 B+0 A+0 ??/07/01 00:00:00 A+1 B+2 A+1 ??/07/01 00:00:01 A+2 B+3 A+2 [Note: posix2time(B+1) => A+0 or A+1] If leap-second support is not enabled, local time_t's and POSIX time_t's are equivalent, and both time2posix() and posix2time() degenerate to the identity function.--SEE ALSO

difftime(3), localtime(3), localtime_r(3), localtime_rz(3), mktime(3), mktime_z(3), time(3), tzalloc(3)BSD

December 4, 2010 BSD