Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

mlib_signallpc2cepstral_f32(3mlib) [opensolaris man page]

mlib_SignalLPC2Cepstral_F32(3MLIB)			    mediaLib Library Functions				mlib_SignalLPC2Cepstral_F32(3MLIB)

NAME
mlib_SignalLPC2Cepstral_F32 - convert linear prediction coefficients to cepstral coefficients SYNOPSIS
cc [ flag... ] file... -lmlib [ library... ] #include <mlib.h> mlib_status mlib_SignalLPC2Cepstral_F32(mlib_f32 *cepst, const mlib_f32 *lpc, mlib_f32 gain, mlib_s32 length, mlib_s32 order); DESCRIPTION
The mlib_SignalLPC2Cepstral_F32() function converts linear prediction coefficients to cepstral coefficients. The cepstral coefficients are the coefficients of the Fourier transform representation of the log magnitude spectrum. The LPC cepstral coefficients can be derived recursively from the LPC coefficients as following. c(0) = log(G) m-1 k c(m) = a(m) + SUM --- * c(k) * a(m-k), 1 <= m <= M k=1 m m-1 k c(m) = SUM --- * c(k) * a(m-k), m > M k=1 m See Fundamentals of Speech Recognition by Lawrence Rabiner and Biing-Hwang Juang, Prentice Hall, 1993. PARAMETERS
The function takes the following arguments: cepst The cepstral coefficients. lpc The linear prediction coefficients. gain The gain of the LPC model. length The length of the cepstral coefficients. order The order of the linear prediction filter. RETURN VALUES
The function returns MLIB_SUCCESS if successful. Otherwise it returns MLIB_FAILURE. ATTRIBUTES
See attributes(5) for descriptions of the following attributes: +-----------------------------+-----------------------------+ | ATTRIBUTE TYPE | ATTRIBUTE VALUE | +-----------------------------+-----------------------------+ |Interface Stability |Committed | +-----------------------------+-----------------------------+ |MT-Level |MT-Safe | +-----------------------------+-----------------------------+ SEE ALSO
mlib_SignalLPC2Cepstral_S16(3MLIB), mlib_SignalLPC2Cepstral_S16_Adp(3MLIB), mlib_SignalLPC2Cepstral_F32(3MLIB), attributes(5) SunOS 5.11 2 Mar 2007 mlib_SignalLPC2Cepstral_F32(3MLIB)

Check Out this Related Man Page

mlib_SignalLPC2LSP_F32(3MLIB)				    mediaLib Library Functions				     mlib_SignalLPC2LSP_F32(3MLIB)

NAME
mlib_SignalLPC2LSP_F32 - convert linear prediction coefficients to line spectral pair coefficients SYNOPSIS
cc [ flag... ] file... -lmlib [ library... ] #include <mlib.h> mlib_status mlib_SignalLPC2LSP_F32(mlib_f32 *lsp, const mlib_f32 *lpc, mlib_s32 order); DESCRIPTION
The mlib_SignalLPC2LSP_F32() function converts linear prediction coefficients to line spectral pair coefficients. The line spectral pair (LPS) coefficients are defined as the roots of the following two polynomials: -(M+1) -1 P(z) = A(z) + z * A(z ) -(M+1) -1 Q(z) = A(z) - z * A(z ) where A(z) is the inverse filter M -i A(z) = 1- SUM a(i) * z i=1 Note that since P(z) is symmetric and Q(z) is antisymmetric all roots of these polynomials are on the unit circle and they alternate each other. P(z) has a root at z = -1 (w = PI) and Q(z) has a root at z = 1 (w = 0). The line spectral frequency (LPF) are the angular frequency of the line spectral pair (LPS) coefficients. q = cos(w) where q is the LPS and w is the LPF. See Fundamentals of Speech Recognition by Lawrence Rabiner and Biing-Hwang Juang, Prentice Hall, 1993. PARAMETERS
The function takes the following arguments: lsp The line spectral pair coefficients. lpc The linear prediction coefficients. order The order of the linear prediction filter. RETURN VALUES
The function returns MLIB_SUCCESS if successful. Otherwise it returns MLIB_FAILURE. ATTRIBUTES
See attributes(5) for descriptions of the following attributes: +-----------------------------+-----------------------------+ | ATTRIBUTE TYPE | ATTRIBUTE VALUE | +-----------------------------+-----------------------------+ |Interface Stability |Evolving | +-----------------------------+-----------------------------+ |MT-Level |MT-Safe | +-----------------------------+-----------------------------+ SEE ALSO
mlib_SignalLSP2LPC_F32(3MLIB), attributes(5) SunOS 5.10 10 Nov 2004 mlib_SignalLPC2LSP_F32(3MLIB)
Man Page