# remainderf(3m) [opensolaris man page]

```remainder(3M)						  Mathematical Library Functions					     remainder(3M)

NAME
remainder, remainderf, remainderl - remainder function

SYNOPSIS
c99 [ flag... ] file... -lm [ library... ]
#include <math.h>

double remainder(double x, double y);

float remainderf(float x, float y);

long double remainderl(long double x, long double y);

DESCRIPTION
These  functions  return  the  floating	point remainder r = x - ny when y is non-zero. The value n is the integral value nearest the exact
value x/y. When |n - x/y| = 1/2, the value n is chosen to be even.

The behavior of remainder() is independent of the rounding mode.

RETURN VALUES
Upon successful completion, these functions return the floating point remainder r = x - ny when y is non-zero.

If x or y is NaN, a NaN is returned.

If x is infinite or y is 0 and the other is non-NaN, a domain error occurs and a NaN is returned.

ERRORS
These functions will fail if:

Domain Error    The x argument is +-Inf, or the y argument is +-0 and the other argument is non-NaN.

If the integer expression (math_errhandling & MATH_ERREXCEPT) is non-zero, then the  invalid  floating-point  exception	is
raised.

The remainder() function sets errno to EDOM if y argument is 0 or the x argument is positive or negative infinity.

USAGE
An  application	wanting  to  check for error situations can set errno to 0 before calling remainder(). On return, if errno is non-zero, an
error has occurred. The remainderf() and remainderl() functions do not set errno.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

+-----------------------------+-----------------------------+
|      ATTRIBUTE TYPE	     |	    ATTRIBUTE VALUE	   |
+-----------------------------+-----------------------------+
|Interface Stability	     |Standard			   |
+-----------------------------+-----------------------------+
|MT-Level		     |MT-Safe			   |
+-----------------------------+-----------------------------+

abs(3C), div(3C), feclearexcept(3M), fetestexcept(3M), attributes(5), standards(5)

SunOS 5.11							    12 Jul 2006 						     remainder(3M)```

## Check Out this Related Man Page

```remainder(3M)						  Mathematical Library Functions					     remainder(3M)

NAME
remainder, remainderf, remainderl - remainder function

SYNOPSIS
cc [ flag... ] file... -lm [ library... ]
#include <math.h>

double remainder(double x, double y);

float remainderf(float x, float y);

long double remainderl(long double x, long double y);

DESCRIPTION
These  functions  return  the  floating	point remainder r = x - ny when y is non-zero. The value n is the integral value nearest the exact
value x/y. When |n - x/y| = 1/2, the value n is chosen to be even.

The behavior of remainder() is independent of the rounding mode.

RETURN VALUES
Upon successful completion, these functions return the floating point remainder r = x - ny when y is non-zero.

If x or y is NaN, a NaN is returned.

If x is infinite or y is 0 and the other is non-NaN, a domain error occurs and a NaN is returned.

ERRORS
These functions will fail if:

Domain Error    The x argument is +-Inf, or the y argument is +-0 and the other argument is non-NaN.

If the integer expression (math_errhandling & MATH_ERREXCEPT) is non-zero, then the  invalid  floating-point  exception	is
raised.

The remainder() function sets errno to EDOM if y argument is 0 or the x argument is positive or negative infinity.

USAGE
An  application	wanting  to  check for error situations can set errno to 0 before calling remainder(). On return, if errno is non-zero, an
error has occurred. The remainderf() and remainderl() functions do not set errno.

ATTRIBUTES
See attributes(5) for descriptions of the following attributes:

+-----------------------------+-----------------------------+
|      ATTRIBUTE TYPE	     |	    ATTRIBUTE VALUE	   |
+-----------------------------+-----------------------------+
|Interface Stability	     |Standard			   |
+-----------------------------+-----------------------------+
|MT-Level		     |MT-Safe			   |
+-----------------------------+-----------------------------+