Unix/Linux Go Back    


NetBSD 6.1.5 - man page for libarchive (netbsd section 3)

Linux & Unix Commands - Search Man Pages
Man Page or Keyword Search:   man
Select Man Page Set:       apropos Keyword Search (sections above)


LIBARCHIVE(3)			   BSD Library Functions Manual 		    LIBARCHIVE(3)

NAME
     libarchive -- functions for reading and writing streaming archives

LIBRARY
     library ``libarchive''

OVERVIEW
     The libarchive library provides a flexible interface for reading and writing streaming ar-
     chive files such as tar and cpio.	The library is inherently stream-oriented; readers seri-
     ally iterate through the archive, writers serially add things to the archive.  In particu-
     lar, note that there is no built-in support for random access nor for in-place modification.

     When reading an archive, the library automatically detects the format and the compression.
     The library currently has read support for:
     o	 old-style tar archives,
     o	 most variants of the POSIX ``ustar'' format,
     o	 the POSIX ``pax interchange'' format,
     o	 GNU-format tar archives,
     o	 most common cpio archive formats,
     o	 ISO9660 CD images (with or without RockRidge extensions),
     o	 Zip archives.
     The library automatically detects archives compressed with gzip(1), bzip2(1), or compress(1)
     and decompresses them transparently.

     When writing an archive, you can specify the compression to be used and the format to use.
     The library can write
     o	 POSIX-standard ``ustar'' archives,
     o	 POSIX ``pax interchange format'' archives,
     o	 POSIX octet-oriented cpio archives,
     o	 two different variants of shar archives.
     Pax interchange format is an extension of the tar archive format that eliminates essentially
     all of the limitations of historic tar formats in a standard fashion that is supported by
     POSIX-compliant pax(1) implementations on many systems as well as several newer implementa-
     tions of tar(1).  Note that the default write format will suppress the pax extended
     attributes for most entries; explicitly requesting pax format will enable those attributes
     for all entries.

     The read and write APIs are accessed through the archive_read_XXX() functions and the
     archive_write_XXX() functions, respectively, and either can be used independently of the
     other.

     The rest of this manual page provides an overview of the library operation.  More detailed
     information can be found in the individual manual pages for each API or utility function.

READING AN ARCHIVE
     To read an archive, you must first obtain an initialized struct archive object from
     archive_read_new().  You can then modify this object for the desired operations with the
     various archive_read_set_XXX() and archive_read_support_XXX() functions.  In particular, you
     will need to invoke appropriate archive_read_support_XXX() functions to enable the corre-
     sponding compression and format support.  Note that these latter functions perform two dis-
     tinct operations: they cause the corresponding support code to be linked into your program,
     and they enable the corresponding auto-detect code.  Unless you have specific constraints,
     you will generally want to invoke archive_read_support_compression_all() and
     archive_read_support_format_all() to enable auto-detect for all formats and compression
     types currently supported by the library.

     Once you have prepared the struct archive object, you call archive_read_open() to actually
     open the archive and prepare it for reading.  There are several variants of this function;
     the most basic expects you to provide pointers to several functions that can provide blocks
     of bytes from the archive.  There are convenience forms that allow you to specify a file-
     name, file descriptor, FILE * object, or a block of memory from which to read the archive
     data.  Note that the core library makes no assumptions about the size of the blocks read;
     callback functions are free to read whatever block size is most appropriate for the medium.

     Each archive entry consists of a header followed by a certain amount of data.  You can
     obtain the next header with archive_read_next_header(), which returns a pointer to an struct
     archive_entry structure with information about the current archive element.  If the entry is
     a regular file, then the header will be followed by the file data.  You can use
     archive_read_data() (which works much like the read(2) system call) to read this data from
     the archive.  You may prefer to use the higher-level archive_read_data_skip(), which reads
     and discards the data for this entry, archive_read_data_to_buffer(), which reads the data
     into an in-memory buffer, archive_read_data_to_file(), which copies the data to the provided
     file descriptor, or archive_read_extract(), which recreates the specified entry on disk and
     copies data from the archive.  In particular, note that archive_read_extract() uses the
     struct archive_entry structure that you provide it, which may differ from the entry just
     read from the archive.  In particular, many applications will want to override the pathname,
     file permissions, or ownership.

     Once you have finished reading data from the archive, you should call archive_read_close()
     to close the archive, then call archive_read_finish() to release all resources, including
     all memory allocated by the library.

     The archive_read(3) manual page provides more detailed calling information for this API.

WRITING AN ARCHIVE
     You use a similar process to write an archive.  The archive_write_new() function creates an
     archive object useful for writing, the various archive_write_set_XXX() functions are used to
     set parameters for writing the archive, and archive_write_open() completes the setup and
     opens the archive for writing.

     Individual archive entries are written in a three-step process: You first initialize a
     struct archive_entry structure with information about the new entry.  At a minimum, you
     should set the pathname of the entry and provide a struct stat with a valid st_mode field,
     which specifies the type of object and st_size field, which specifies the size of the data
     portion of the object.  The archive_write_header() function actually writes the header data
     to the archive.  You can then use archive_write_data() to write the actual data.

     After all entries have been written, use the archive_write_finish() function to release all
     resources.

     The archive_write(3) manual page provides more detailed calling information for this API.

DESCRIPTION
     Detailed descriptions of each function are provided by the corresponding manual pages.

     All of the functions utilize an opaque struct archive datatype that provides access to the
     archive contents.

     The struct archive_entry structure contains a complete description of a single archive
     entry.  It uses an opaque interface that is fully documented in archive_entry(3).

     Users familiar with historic formats should be aware that the newer variants have eliminated
     most restrictions on the length of textual fields.  Clients should not assume that file-
     names, link names, user names, or group names are limited in length.  In particular, pax
     interchange format can easily accommodate pathnames in arbitrary character sets that exceed
     PATH_MAX.

RETURN VALUES
     Most functions return zero on success, non-zero on error.	The return value indicates the
     general severity of the error, ranging from ARCHIVE_WARN, which indicates a minor problem
     that should probably be reported to the user, to ARCHIVE_FATAL, which indicates a serious
     problem that will prevent any further operations on this archive.	On error, the
     archive_errno() function can be used to retrieve a numeric error code (see errno(2)).  The
     archive_error_string() returns a textual error message suitable for display.

     archive_read_new() and archive_write_new() return pointers to an allocated and initialized
     struct archive object.

     archive_read_data() and archive_write_data() return a count of the number of bytes actually
     read or written.  A value of zero indicates the end of the data for this entry.  A negative
     value indicates an error, in which case the archive_errno() and archive_error_string() func-
     tions can be used to obtain more information.

ENVIRONMENT
     There are character set conversions within the archive_entry(3) functions that are impacted
     by the currently-selected locale.

SEE ALSO
     tar(1), archive_entry(3), archive_read(3), archive_util(3), archive_write(3), tar(5)

HISTORY
     The libarchive library first appeared in FreeBSD 5.3.

AUTHORS
     The libarchive library was written by Tim Kientzle <kientzle@acm.org>.

BUGS
     Some archive formats support information that is not supported by struct archive_entry.
     Such information cannot be fully archived or restored using this library.	This includes,
     for example, comments, character sets, or the arbitrary key/value pairs that can appear in
     pax interchange format archives.

     Conversely, of course, not all of the information that can be stored in an struct
     archive_entry is supported by all formats.  For example, cpio formats do not support
     nanosecond timestamps; old tar formats do not support large device numbers.

BSD					 August 19, 2006				      BSD
Unix & Linux Commands & Man Pages : ©2000 - 2018 Unix and Linux Forums


All times are GMT -4. The time now is 10:17 PM.