👤
Home Man
Search
Today's Posts
Register

Linux & Unix Commands - Search Man Pages
Man Page or Keyword Search:
Select Section of Man Page:
Select Man Page Repository:

NetBSD 6.1.5 - man page for cksum (netbsd section 1)

CKSUM(1)			   BSD General Commands Manual				 CKSUM(1)

NAME
     cksum, md2, md4, md5, rmd160, sha1, sum -- display file checksums and block counts

SYNOPSIS
     cksum [-n] [-a algorithm [-ptx] [-s string]] [-o 1|2] [file ... | -c [-w] [sumfile]]
     sum [-n] [-a algorithm [-ptx] [-s string]] [-o 1|2] [file ... | -c [-w] [sumfile]]
     md2 [-nptx] [-s string] [file ... | -c [-w] [sumfile]]
     md4 [-nptx] [-s string] [file ... | -c [-w] [sumfile]]
     md5 [-nptx] [-s string] [file ... | -c [-w] [sumfile]]
     rmd160 [-nptx] [-s string] [file ... | -c [-w] [sumfile]]
     sha1 [-nptx] [-s string] [file ... | -c [-w] [sumfile]]

DESCRIPTION
     The cksum utility writes to the standard output three whitespace separated fields for each
     input file.  These fields are a checksum CRC, the total number of octets in the file and the
     file name.  If no file name is specified, the standard input is used and no file name is
     written.

     The sum utility is identical to the cksum utility, except that it defaults to using historic
     algorithm 1, as described below.  It is provided for compatibility only.

     The md2, md4, md5, sha1, and rmd160 utilities compute cryptographic hash functions, and
     write to standard output the hexadecimal representation of the hash of their input.

     The options are as follows:

     -a algorithm
	     When invoked as cksum, use the specified algorithm.  Valid algorithms are:

		   Algorithm	Bits	Description
		   CRC		32	Default CRC algorithm
		   MD2		128	MD2, per RFC1319
		   MD4		128	MD4, per RFC1320
		   MD5		128	MD5, per RFC1321
		   RMD160	160	RIPEMD-160
		   SHA1 	160	SHA-1, per FIPS PUB 180-1
		   SHA256	256	SHA-2
		   SHA384	384	SHA-2
		   SHA512	512	SHA-2
		   old1 	16	Algorithm 1, per -o 1
		   old2 	16	Algorithm 2, per -o 2

     -c [sumfile]
	     Verify (check) files against a list of checksums.	The list is read from sumfile, or
	     from stdin if no filename is given.  E.g. first run
		   md5 *.tgz > MD5
		   sha1 *.tgz > SHA1
	     to generate a list of MD5 checksums in MD5, then use the following command to verify
	     them:
		   cat MD5 SHA1 | cksum -c
	     If an error is found during checksum verification, an error message is printed, and
	     the program returns an error code of 1.

     -o      Use historic algorithms instead of the (superior) default one.

	     Algorithm 1 is the algorithm used by historic BSD systems as the sum(1) algorithm
	     and by historic AT&T System V UNIX systems as the sum(1) algorithm when using the -r
	     option.  This is a 16-bit checksum, with a right rotation before each addition;
	     overflow is discarded.

	     Algorithm 2 is the algorithm used by historic AT&T System V UNIX systems as the
	     default sum(1) algorithm.	This is a 32-bit checksum, and is defined as follows:

		   s = sum of all bytes;
		   r = s % 2^16 + (s % 2^32) / 2^16;
		   cksum = (r % 2^16) + r / 2^16;

	     Both algorithm 1 and 2 write to the standard output the same fields as the default
	     algorithm except that the size of the file in bytes is replaced with the size of the
	     file in blocks.  For historic reasons, the block size is 1024 for algorithm 1 and
	     512 for algorithm 2.  Partial blocks are rounded up.

     -w      Print warnings about malformed checksum files when verifying checksums with -c.

     The following options apply only when using the one of the message digest algorithms:

     -n      Print the hash and the filename in the normal sum output form, with the hash at the
	     left and the filename following on the right.

     -p      Echo input from standard input to standard output, and append the selected message
	     digest.

     -s string
	     Print the hash of the given string string.

     -t      Run a built-in message digest time trial.

     -x      Run a built-in message digest test script.  The tests that are run are supposed to
	     encompass all the various tests in the suites that accompany the algorithms'
	     descriptions with the exception of the last test for the SHA-1 algorithm and the
	     RIPEMD-160 algorithm.  The last test for these is one million copies of the lower
	     letter a.

     The default CRC used is based on the polynomial used for CRC error checking in the network-
     ing standard ISO/IEC 8802-3:1989.	The CRC checksum encoding is defined by the generating
     polynomial:

	   G(x) = x^32 + x^26 + x^23 + x^22 + x^16 + x^12 +
		x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1

     Mathematically, the CRC value corresponding to a given file is defined by the following pro-
     cedure:

	   The n bits to be evaluated are considered to be the coefficients of a mod 2 polynomial
	   M(x) of degree n-1.	These n bits are the bits from the file, with the  most  signifi-
	   cant  bit  being  the most significant bit of the first octet of the file and the last
	   bit being the least significant bit of the last octet, padded with zero bits (if  nec-
	   essary) to achieve an integral number of octets, followed by one or more octets repre-
	   senting the length of the file as a binary value, least significant octet first.   The
	   smallest number of octets capable of representing this integer are used.

	   M(x)  is multiplied by x^32 (i.e., shifted left 32 bits) and divided by G(x) using mod
	   2 division, producing a remainder R(x) of degree <= 31.

	   The coefficients of R(x) are considered to be a 32-bit sequence.

	   The bit sequence is complemented and the result is the CRC.

     The cksum and sum utilities exit 0 on success, and >0 if an error occurs.

SEE ALSO
     openssl(1), mtree(8)

     The default calculation is identical to that given in pseudo-code in the following ACM arti-
     cle.

     Dilip V. Sarwate, "Computation of Cyclic Redundancy Checks Via Table Lookup", Communications
     of the ACM, August 1988.

     R. Rivest, The MD2 Message-Digest Algorithm, RFC 1319.

     R. Rivest, The MD4 Message-Digest Algorithm, RFC 1186 and RFC 1320.

     R. Rivest, The MD5 Message-Digest Algorithm, RFC 1321.

     U.S. DOC/NIST, Secure Hash Standard, FIPS PUB 180-1.

STANDARDS
     The cksum utility is expected to conform to IEEE Std 1003.1-2004 (``POSIX.1'').

HISTORY
     The cksum utility appeared in 4.4BSD.  md5 was added in NetBSD 1.3.  The functionality for
     md2, md4, sha1, and rmd160 was added in NetBSD 1.6.  Support for the SHA-2 algorithms
     (SHA256, SHA384, and SHA512) was added in NetBSD 3.0.  The functionality to verify checksum
     stored in a file (-c) first appeared in NetBSD 4.0.

BSD					  June 24, 2012 				      BSD


All times are GMT -4. The time now is 03:32 AM.

Unix & Linux Forums Content Copyrightę1993-2018. All Rights Reserved.
×
UNIX.COM Login
Username:
Password:  
Show Password