Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

mass(3rheolef) [debian man page]

mass(3rheolef)							    rheolef-6.1 						    mass(3rheolef)

NAME
mass -- L2 scalar product SYNOPSIS
form(const space& V, const space& V, "mass"); form(const space& M, const space& V, "mass"); form (const space& V, const space& V, "mass", const domain& gamma); form_diag(const space& V, "mass"); DESCRIPTION
Assembly the matrix associated to the L2 scalar product of the finite element space V. / | m(u,v) = | u v dx | / Omega The V space may be either a P0, P1, P2, bubble, P1d and P1d finite element spaces for building a form see form(2). The use of quadrature formulae is sometime usefull for building diagonal matrix. These approximate matrix are eay to invert. This proce- dure is available for P0 and P1 approximations. Notes that when dealing with discontinuous finite element space, i.e. P0 and P1d, the corresponding mass matrix is block diagonal, and the inv_mass form may be usefull. When two different space M and V are supplied, assembly the matrix associated to the projection operator from one finite element space M to space V. / | m(q,v) = | q v dx | / Omega for all q in M and v in V. This form is usefull for instance to convert discontinuous gradient components to a continuous approximation. The transpose operator may also be usefull to performs the opposite operation. The following $V$ and $M$ space approximation combinations are supported for the mass form: P0-P1, P0-P1d, P1d-P2, P1-P1d and P1-P2. EXAMPLE
The following piece of code build the mass matrix associated to the P1 approximation: geo g("square"); space V(g, "P1"); form m(V, V, "mass"); The use of lumped mass form write also: form_diag md(V, "mass"); The following piece of code build the projection form: geo g("square"); space V(g, "P1"); space M(g, "P0"); form m(M, V, "mass"); SCALAR PRODUCT ON THE BOUNDARY
Assembly the matrix associated to the L2 scalar product related to a boundary domain of a mesh and a specified polynomial approximation. These forms are usefull when defining non-homogeneous Neumann or Robin boundary conditions. Let W be a space of functions defined on Gamma, a subset of the boundary of the whole domain Omega. / | m(u,v) = | u v dx | / Gamma for all u, v in W. Let V a space of functions defined on Omega and gamma the trace operator from V into W. For all u in W and v in V: / | mb(u,v) = | u gamma(v) dx | / Gamma For all u and v in V: / | ab(u,v) = | gamma(u) gamma(v) dx | / Gamma EXAMPLE
The following piece of code build forms for the P1 approximation, assuming that the mesh contains a domain named boundary: geo omega ("square"); domain gamma = omega.boundary(); space V (omega, "P1"); space W (omega, gamma, "P1"); form m (W, W, "mass"); form mb (W, V, "mass"); form ab (V, V, "mass", gamma); SEE ALSO
form(2) rheolef-6.1 rheolef-6.1 mass(3rheolef)

Check Out this Related Man Page

form_element(7rheolef)						    rheolef-6.1 					    form_element(7rheolef)

NAME
form_element - bilinear form on a single element SYNOPSYS
The form_element class defines functions that compute a bilinear form defined between two polynomial basis on a single geometrical element. This bilinear form is represented by a matrix. The bilinear form is designated by a string, e.g. "mass", "grad_grad", ... indicating the form. The form depends also of the geometrical element: triangle, square, tetrahedron (see geo_element(2)). IMPLEMENTATION NOTE
The form_element class is managed by (see smart_pointer(2)). This class uses a pointer on a pure virtual class form_element_rep while the effective code refers to the specific concrete derived classes: mass, grad_grad, etc. IMPLEMENTATION
template <class T, class M> class form_element : public smart_pointer<form_element_rep<T,M> > { public: // typedefs: typedef form_element_rep<T,M> rep; typedef smart_pointer<rep> base; typedef typename rep::size_type size_type; typedef typename rep::vertex_type vertex_type; typedef typename rep::space_type space_type; typedef typename rep::geo_type geo_type; typedef typename rep::coordinate_type coordinate_type; // constructors: form_element (); form_element ( std::string name, const space_type& X, const space_type& Y, const geo_type& omega, const quadrature_option_type& qopt); // accessors & modifier: void operator() (const geo_element& K, ublas::matrix<T>& m) const; virtual bool is_symmetric () const; // for scalar-weighted forms: void set_weight (const field_basic<T,M>& wh) const; bool is_weighted() const; const field_basic<T,M>& get_weight () const; // for banded level set method: bool is_on_band() const; const band_basic<T,M>& get_band() const; void set_band (const band_basic<T,M>& bh) const; }; SEE ALSO
geo_element(2), smart_pointer(2) rheolef-6.1 rheolef-6.1 form_element(7rheolef)
Man Page