# zlar2v.f(3) [debian man page]

```zlar2v.f(3)							      LAPACK							       zlar2v.f(3)

NAME
zlar2v.f -

SYNOPSIS
Functions/Subroutines
subroutine zlar2v (N, X, Y, Z, INCX, C, S, INCC)
ZLAR2V

Function/Subroutine Documentation
subroutine zlar2v (integerN, complex*16, dimension( * )X, complex*16, dimension( * )Y, complex*16, dimension( * )Z, integerINCX, double
precision, dimension( * )C, complex*16, dimension( * )S, integerINCC)
ZLAR2V

Purpose:

ZLAR2V applies a vector of complex plane rotations with real cosines
from both sides to a sequence of 2-by-2 complex Hermitian matrices,
defined by the elements of the vectors x, y and z. For i = 1,2,...,n

(       x(i)  z(i) ) :=
( conjg(z(i)) y(i) )

(  c(i) conjg(s(i)) ) (       x(i)  z(i) ) ( c(i) -conjg(s(i)) )
( -s(i)       c(i)  ) ( conjg(z(i)) y(i) ) ( s(i)	  c(i)	)

Parameters:
N

N is INTEGER
The number of plane rotations to be applied.

X

X is COMPLEX*16 array, dimension (1+(N-1)*INCX)
The vector x; the elements of x are assumed to be real.

Y

Y is COMPLEX*16 array, dimension (1+(N-1)*INCX)
The vector y; the elements of y are assumed to be real.

Z

Z is COMPLEX*16 array, dimension (1+(N-1)*INCX)
The vector z.

INCX

INCX is INTEGER
The increment between elements of X, Y and Z. INCX > 0.

C

C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.

S

S is COMPLEX*16 array, dimension (1+(N-1)*INCC)
The sines of the plane rotations.

INCC

INCC is INTEGER
The increment between elements of C and S. INCC > 0.

Author:
Univ. of Tennessee

Univ. of California Berkeley

NAG Ltd.

Date:
November 2011

Definition at line 112 of file zlar2v.f.

Author
Generated automatically by Doxygen for LAPACK from the source code.

Version 3.4.1							  Sun May 26 2013						       zlar2v.f(3)```

## Check Out this Related Man Page

```zlar2v.f(3)							      LAPACK							       zlar2v.f(3)

NAME
zlar2v.f -

SYNOPSIS
Functions/Subroutines
subroutine zlar2v (N, X, Y, Z, INCX, C, S, INCC)
ZLAR2V

Function/Subroutine Documentation
subroutine zlar2v (integerN, complex*16, dimension( * )X, complex*16, dimension( * )Y, complex*16, dimension( * )Z, integerINCX, double
precision, dimension( * )C, complex*16, dimension( * )S, integerINCC)
ZLAR2V

Purpose:

ZLAR2V applies a vector of complex plane rotations with real cosines
from both sides to a sequence of 2-by-2 complex Hermitian matrices,
defined by the elements of the vectors x, y and z. For i = 1,2,...,n

(       x(i)  z(i) ) :=
( conjg(z(i)) y(i) )

(  c(i) conjg(s(i)) ) (       x(i)  z(i) ) ( c(i) -conjg(s(i)) )
( -s(i)       c(i)  ) ( conjg(z(i)) y(i) ) ( s(i)	  c(i)	)

Parameters:
N

N is INTEGER
The number of plane rotations to be applied.

X

X is COMPLEX*16 array, dimension (1+(N-1)*INCX)
The vector x; the elements of x are assumed to be real.

Y

Y is COMPLEX*16 array, dimension (1+(N-1)*INCX)
The vector y; the elements of y are assumed to be real.

Z

Z is COMPLEX*16 array, dimension (1+(N-1)*INCX)
The vector z.

INCX

INCX is INTEGER
The increment between elements of X, Y and Z. INCX > 0.

C

C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.

S

S is COMPLEX*16 array, dimension (1+(N-1)*INCC)
The sines of the plane rotations.

INCC

INCC is INTEGER
The increment between elements of C and S. INCC > 0.

Author:
Univ. of Tennessee

Univ. of California Berkeley