Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

cgbcon.f(3) [debian man page]

cgbcon.f(3)							      LAPACK							       cgbcon.f(3)

NAME
cgbcon.f - SYNOPSIS
Functions/Subroutines subroutine cgbcon (NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND, WORK, RWORK, INFO) CGBCON Function/Subroutine Documentation subroutine cgbcon (characterNORM, integerN, integerKL, integerKU, complex, dimension( ldab, * )AB, integerLDAB, integer, dimension( * )IPIV, realANORM, realRCOND, complex, dimension( * )WORK, real, dimension( * )RWORK, integerINFO) CGBCON Purpose: CGBCON estimates the reciprocal of the condition number of a complex general band matrix A, in either the 1-norm or the infinity-norm, using the LU factorization computed by CGBTRF. An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / ( norm(A) * norm(inv(A)) ). Parameters: NORM NORM is CHARACTER*1 Specifies whether the 1-norm condition number or the infinity-norm condition number is required: = '1' or 'O': 1-norm; = 'I': Infinity-norm. N N is INTEGER The order of the matrix A. N >= 0. KL KL is INTEGER The number of subdiagonals within the band of A. KL >= 0. KU KU is INTEGER The number of superdiagonals within the band of A. KU >= 0. AB AB is COMPLEX array, dimension (LDAB,N) Details of the LU factorization of the band matrix A, as computed by CGBTRF. U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1. LDAB LDAB is INTEGER The leading dimension of the array AB. LDAB >= 2*KL+KU+1. IPIV IPIV is INTEGER array, dimension (N) The pivot indices; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i). ANORM ANORM is REAL If NORM = '1' or 'O', the 1-norm of the original matrix A. If NORM = 'I', the infinity-norm of the original matrix A. RCOND RCOND is REAL The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(norm(A) * norm(inv(A))). WORK WORK is COMPLEX array, dimension (2*N) RWORK RWORK is REAL array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 147 of file cgbcon.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 cgbcon.f(3)

Check Out this Related Man Page

CGBCON(l)								 )								 CGBCON(l)

NAME
CGBCON - estimate the reciprocal of the condition number of a complex general band matrix A, in either the 1-norm or the infinity-norm, SYNOPSIS
SUBROUTINE CGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND, WORK, RWORK, INFO ) CHARACTER NORM INTEGER INFO, KL, KU, LDAB, N REAL ANORM, RCOND INTEGER IPIV( * ) REAL RWORK( * ) COMPLEX AB( LDAB, * ), WORK( * ) PURPOSE
CGBCON estimates the reciprocal of the condition number of a complex general band matrix A, in either the 1-norm or the infinity-norm, using the LU factorization computed by CGBTRF. An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / ( norm(A) * norm(inv(A)) ). ARGUMENTS
NORM (input) CHARACTER*1 Specifies whether the 1-norm condition number or the infinity-norm condition number is required: = '1' or 'O': 1-norm; = 'I': Infinity-norm. N (input) INTEGER The order of the matrix A. N >= 0. KL (input) INTEGER The number of subdiagonals within the band of A. KL >= 0. KU (input) INTEGER The number of superdiagonals within the band of A. KU >= 0. AB (input) COMPLEX array, dimension (LDAB,N) Details of the LU factorization of the band matrix A, as computed by CGBTRF. U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1. LDAB (input) INTEGER The leading dimension of the array AB. LDAB >= 2*KL+KU+1. IPIV (input) INTEGER array, dimension (N) The pivot indices; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i). ANORM (input) REAL If NORM = '1' or 'O', the 1-norm of the original matrix A. If NORM = 'I', the infinity-norm of the original matrix A. RCOND (output) REAL The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(norm(A) * norm(inv(A))). WORK (workspace) COMPLEX array, dimension (2*N) RWORK (workspace) REAL array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value LAPACK version 3.0 15 June 2000 CGBCON(l)
Man Page