Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

mmap(2) [debian man page]

MMAP(2) 						     Linux Programmer's Manual							   MMAP(2)

mmap, munmap - map or unmap files or devices into memory SYNOPSIS
#include <sys/mman.h> void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset); int munmap(void *addr, size_t length); DESCRIPTION
mmap() creates a new mapping in the virtual address space of the calling process. The starting address for the new mapping is specified in addr. The length argument specifies the length of the mapping. If addr is NULL, then the kernel chooses the address at which to create the mapping; this is the most portable method of creating a new mapping. If addr is not NULL, then the kernel takes it as a hint about where to place the mapping; on Linux, the mapping will be created at a nearby page boundary. The address of the new mapping is returned as the result of the call. The contents of a file mapping (as opposed to an anonymous mapping; see MAP_ANONYMOUS below), are initialized using length bytes starting at offset offset in the file (or other object) referred to by the file descriptor fd. offset must be a multiple of the page size as returned by sysconf(_SC_PAGE_SIZE). The prot argument describes the desired memory protection of the mapping (and must not conflict with the open mode of the file). It is either PROT_NONE or the bitwise OR of one or more of the following flags: PROT_EXEC Pages may be executed. PROT_READ Pages may be read. PROT_WRITE Pages may be written. PROT_NONE Pages may not be accessed. The flags argument determines whether updates to the mapping are visible to other processes mapping the same region, and whether updates are carried through to the underlying file. This behavior is determined by including exactly one of the following values in flags: MAP_SHARED Share this mapping. Updates to the mapping are visible to other processes that map this file, and are carried through to the underlying file. The file may not actually be updated until msync(2) or munmap() is called. MAP_PRIVATE Create a private copy-on-write mapping. Updates to the mapping are not visible to other processes mapping the same file, and are not carried through to the underlying file. It is unspecified whether changes made to the file after the mmap() call are visible in the mapped region. Both of these flags are described in POSIX.1-2001. In addition, zero or more of the following values can be ORed in flags: MAP_32BIT (since Linux 2.4.20, 2.6) Put the mapping into the first 2 Gigabytes of the process address space. This flag is only supported on x86-64, for 64-bit pro- grams. It was added to allow thread stacks to be allocated somewhere in the first 2GB of memory, so as to improve context-switch performance on some early 64-bit processors. Modern x86-64 processors no longer have this performance problem, so use of this flag is not required on those systems. The MAP_32BIT flag is ignored when MAP_FIXED is set. MAP_ANON Synonym for MAP_ANONYMOUS. Deprecated. MAP_ANONYMOUS The mapping is not backed by any file; its contents are initialized to zero. The fd and offset arguments are ignored; however, some implementations require fd to be -1 if MAP_ANONYMOUS (or MAP_ANON) is specified, and portable applications should ensure this. The use of MAP_ANONYMOUS in conjunction with MAP_SHARED is only supported on Linux since kernel 2.4. MAP_DENYWRITE This flag is ignored. (Long ago, it signaled that attempts to write to the underlying file should fail with ETXTBUSY. But this was a source of denial-of-service attacks.) MAP_EXECUTABLE This flag is ignored. MAP_FILE Compatibility flag. Ignored. MAP_FIXED Don't interpret addr as a hint: place the mapping at exactly that address. addr must be a multiple of the page size. If the memory region specified by addr and len overlaps pages of any existing mapping(s), then the overlapped part of the existing mapping(s) will be discarded. If the specified address cannot be used, mmap() will fail. Because requiring a fixed address for a mapping is less portable, the use of this option is discouraged. MAP_GROWSDOWN Used for stacks. Indicates to the kernel virtual memory system that the mapping should extend downward in memory. MAP_HUGETLB (since Linux 2.6.32) Allocate the mapping using "huge pages." See the Linux kernel source file Documentation/vm/hugetlbpage.txt for further information. MAP_LOCKED (since Linux 2.5.37) Lock the pages of the mapped region into memory in the manner of mlock(2). This flag is ignored in older kernels. MAP_NONBLOCK (since Linux 2.5.46) Only meaningful in conjunction with MAP_POPULATE. Don't perform read-ahead: only create page tables entries for pages that are already present in RAM. Since Linux 2.6.23, this flag causes MAP_POPULATE to do nothing. One day the combination of MAP_POPULATE and MAP_NONBLOCK may be reimplemented. MAP_NORESERVE Do not reserve swap space for this mapping. When swap space is reserved, one has the guarantee that it is possible to modify the mapping. When swap space is not reserved one might get SIGSEGV upon a write if no physical memory is available. See also the dis- cussion of the file /proc/sys/vm/overcommit_memory in proc(5). In kernels before 2.6, this flag only had effect for private writable mappings. MAP_POPULATE (since Linux 2.5.46) Populate (prefault) page tables for a mapping. For a file mapping, this causes read-ahead on the file. Later accesses to the map- ping will not be blocked by page faults. MAP_POPULATE is only supported for private mappings since Linux 2.6.23. MAP_STACK (since Linux 2.6.27) Allocate the mapping at an address suitable for a process or thread stack. This flag is currently a no-op, but is used in the glibc threading implementation so that if some architectures require special treatment for stack allocations, support can later be trans- parently implemented for glibc. MAP_UNINITIALIZED (since Linux 2.6.33) Don't clear anonymous pages. This flag is intended to improve performance on embedded devices. This flag is only honored if the kernel was configured with the CONFIG_MMAP_ALLOW_UNINITIALIZED option. Because of the security implications, that option is nor- mally enabled only on embedded devices (i.e., devices where one has complete control of the contents of user memory). Of the above flags, only MAP_FIXED is specified in POSIX.1-2001. However, most systems also support MAP_ANONYMOUS (or its synonym MAP_ANON). Some systems document the additional flags MAP_AUTOGROW, MAP_AUTORESRV, MAP_COPY, and MAP_LOCAL. Memory mapped by mmap() is preserved across fork(2), with the same attributes. A file is mapped in multiples of the page size. For a file that is not a multiple of the page size, the remaining memory is zeroed when mapped, and writes to that region are not written out to the file. The effect of changing the size of the underlying file of a mapping on the pages that correspond to added or removed regions of the file is unspecified. munmap() The munmap() system call deletes the mappings for the specified address range, and causes further references to addresses within the range to generate invalid memory references. The region is also automatically unmapped when the process is terminated. On the other hand, clos- ing the file descriptor does not unmap the region. The address addr must be a multiple of the page size. All pages containing a part of the indicated range are unmapped, and subsequent ref- erences to these pages will generate SIGSEGV. It is not an error if the indicated range does not contain any mapped pages. Timestamps changes for file-backed mappings For file-backed mappings, the st_atime field for the mapped file may be updated at any time between the mmap() and the corresponding unmap- ping; the first reference to a mapped page will update the field if it has not been already. The st_ctime and st_mtime field for a file mapped with PROT_WRITE and MAP_SHARED will be updated after a write to the mapped region, and before a subsequent msync(2) with the MS_SYNC or MS_ASYNC flag, if one occurs. RETURN VALUE
On success, mmap() returns a pointer to the mapped area. On error, the value MAP_FAILED (that is, (void *) -1) is returned, and errno is set appropriately. On success, munmap() returns 0, on failure -1, and errno is set (probably to EINVAL). ERRORS
EACCES A file descriptor refers to a non-regular file. Or MAP_PRIVATE was requested, but fd is not open for reading. Or MAP_SHARED was requested and PROT_WRITE is set, but fd is not open in read/write (O_RDWR) mode. Or PROT_WRITE is set, but the file is append-only. EAGAIN The file has been locked, or too much memory has been locked (see setrlimit(2)). EBADF fd is not a valid file descriptor (and MAP_ANONYMOUS was not set). EINVAL We don't like addr, length, or offset (e.g., they are too large, or not aligned on a page boundary). EINVAL (since Linux 2.6.12) length was 0. EINVAL flags contained neither MAP_PRIVATE or MAP_SHARED, or contained both of these values. ENFILE The system limit on the total number of open files has been reached. ENODEV The underlying file system of the specified file does not support memory mapping. ENOMEM No memory is available, or the process's maximum number of mappings would have been exceeded. EPERM The prot argument asks for PROT_EXEC but the mapped area belongs to a file on a file system that was mounted no-exec. ETXTBSY MAP_DENYWRITE was set but the object specified by fd is open for writing. Use of a mapped region can result in these signals: SIGSEGV Attempted write into a region mapped as read-only. SIGBUS Attempted access to a portion of the buffer that does not correspond to the file (for example, beyond the end of the file, including the case where another process has truncated the file). CONFORMING TO
On POSIX systems on which mmap(), msync(2) and munmap() are available, _POSIX_MAPPED_FILES is defined in <unistd.h> to a value greater than 0. (See also sysconf(3).) NOTES
This page describes the interface provided by the glibc mmap() wrapper function. Originally, this function invoked a system call of the same name. Since kernel 2.4, that system call has been superseded by mmap2(2), and nowadays the glibc mmap() wrapper function invokes mmap2(2) with a suitably adjusted value for offset. On some hardware architectures (e.g., i386), PROT_WRITE implies PROT_READ. It is architecture dependent whether PROT_READ implies PROT_EXEC or not. Portable programs should always set PROT_EXEC if they intend to execute code in the new mapping. The portable way to create a mapping is to specify addr as 0 (NULL), and omit MAP_FIXED from flags. In this case, the system chooses the address for the mapping; the address is chosen so as not to conflict with any existing mapping, and will not be 0. If the MAP_FIXED flag is specified, and addr is 0 (NULL), then the mapped address will be 0 (NULL). BUGS
On Linux there are no guarantees like those suggested above under MAP_NORESERVE. By default, any process can be killed at any moment when the system runs out of memory. In kernels before 2.6.7, the MAP_POPULATE flag only has effect if prot is specified as PROT_NONE. SUSv3 specifies that mmap() should fail if length is 0. However, in kernels before 2.6.12, mmap() succeeded in this case: no mapping was created and the call returned addr. Since kernel 2.6.12, mmap() fails with the error EINVAL for this case. EXAMPLE
The following program prints part of the file specified in its first command-line argument to standard output. The range of bytes to be printed is specified via offset and length values in the second and third command-line arguments. The program creates a memory mapping of the required pages of the file and then uses write(2) to output the desired bytes. #include <sys/mman.h> #include <sys/stat.h> #include <fcntl.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #define handle_error(msg) do { perror(msg); exit(EXIT_FAILURE); } while (0) int main(int argc, char *argv[]) { char *addr; int fd; struct stat sb; off_t offset, pa_offset; size_t length; ssize_t s; if (argc < 3 || argc > 4) { fprintf(stderr, "%s file offset [length] ", argv[0]); exit(EXIT_FAILURE); } fd = open(argv[1], O_RDONLY); if (fd == -1) handle_error("open"); if (fstat(fd, &sb) == -1) /* To obtain file size */ handle_error("fstat"); offset = atoi(argv[2]); pa_offset = offset & ~(sysconf(_SC_PAGE_SIZE) - 1); /* offset for mmap() must be page aligned */ if (offset >= sb.st_size) { fprintf(stderr, "offset is past end of file "); exit(EXIT_FAILURE); } if (argc == 4) { length = atoi(argv[3]); if (offset + length > sb.st_size) length = sb.st_size - offset; /* Can't display bytes past end of file */ } else { /* No length arg ==> display to end of file */ length = sb.st_size - offset; } addr = mmap(NULL, length + offset - pa_offset, PROT_READ, MAP_PRIVATE, fd, pa_offset); if (addr == MAP_FAILED) handle_error("mmap"); s = write(STDOUT_FILENO, addr + offset - pa_offset, length); if (s != length) { if (s == -1) handle_error("write"); fprintf(stderr, "partial write"); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); } SEE ALSO
getpagesize(2), mincore(2), mlock(2), mmap2(2), mprotect(2), mremap(2), msync(2), remap_file_pages(2), setrlimit(2), shmat(2), shm_open(3), shm_overview(7) B.O. Gallmeister, POSIX.4, O'Reilly, pp. 128-129 and 389-391. COLOPHON
This page is part of release 3.44 of the Linux man-pages project. A description of the project, and information about reporting bugs, can be found at Linux 2012-04-16 MMAP(2)
Man Page