Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

acpl(1) [debian man page]

acpl(1) 						       Scotch user's manual							   acpl(1)

NAME
acpl - compile a target architectures SYNOPSIS
acpl [options] [itfile] [otfile] DESCRIPTION
The acpl program compiles a decomposition-defined target architecture file itfile of type 'deco 0' into a compiled decomposition-defined target architecture of type 'deco 1', stored in file otfile. Compiling a decomposition-defined architecture amounts to computing the distance matrix of all possible subdomains, from the distance matrix of all terminal subdomains provided in the 'deco 0' format. Since this computation is internally performed every time a 'deco 0' format is read, and is quadratic in time, pre-compiling the target architecture by means of acpl can save some time when repeatedly comput- ing mappings on a large decomposition-defined 'deco 0' target architecture. When the proper libraries have been included at compile time, acpl can directly handle compressed files, both as input and output. A stream is treated as compressed whenever its name is postfixed with a compressed file extension, such as in 'brol.tgt.bz2' or '-.gz'. The compres- sion formats which can be supported are the bzip2 format ('.bz2'), the gzip format ('.gz'), and the lzma format ('.lzma', on input only). Since decomposition-defined target architecture files have a size which is quadratic in the number of target vertices, because of the dis- tance matrix structures, using compressed files to store them may save a lot of space, especially for compiled target architecture files. OPTIONS
-h Display some help. -V Display program version and copyright. EXAMPLE
Create a compiled cube-connected-cycle target architecture of dimension 4, and save it under the gzip(1) format to file 'ccc4c.tgt.gz'. The dash '-' standard file name is used so that the 'deco 0' target architecture description produced by amk_ccc(1) is read from the standard input, through the pipe. $ amk_ccc 4 | acpl - ccc4c.tgt.gz SEE ALSO
amk_grf(1), amk_ccc(1), atst(1), dgmap(1), gmap(1), gmtst(1). Scotch user's manual. AUTHOR
Francois Pellegrini <francois.pellegrini@labri.fr> February 14, 2011 acpl(1)

Check Out this Related Man Page

dgmap(1)						      PT-Scotch user's manual							  dgmap(1)

NAME
dgmap, dgpart - compute static mappings and partitions in parallel SYNOPSIS
dgmap [options] [gfile] [tfile] [mfile] [lfile] dgpart [options] [nparts/pwght] [gfile] [mfile] [lfile] DESCRIPTION
The dgmap program computes, in a parallel way, a static mapping of a source graph onto a target graph. The dgpart program is a simplified interface to dgmap, which performs graph partitioning instead of static mapping. Consequently, the desired number of parts has to be provided, in lieu of the target architecture. When using the program for graph clustering, the number of parts turns into maximum cluster weight. The -b and -c options allow the user to set preferences on the behavior of the mapping strategy which is used by default. The -m option allows the user to define a custom mapping strategy. The -q option turns the programs into graph clustering programs. In this case, dgmap only accepts variable-sized target architectures. Source graph file gfile is either a centralized graph file, or a set of files representing fragments of a distributed graph. For dgmap, the target architecture file tfile describes either algorithmically-coded topologies such as meshes and hypercubes, or decomposition-defined architectures created by means of the amk_grf(1) program. See gmap(1) for a description of target architectures. The resulting mapping is stored in file mfile. Eventual logging information (such as the one produced by option -v) is sent to file lfile. When file names are not specified, data is read from standard input and written to standard output. Standard streams can also be explicitely represented by a dash '-'. When the proper libraries have been included at compile time, dgmap and dgpart can directly handle compressed graphs, both as input and output. A stream is treated as compressed whenever its name is postfixed with a compressed file extension, such as in 'brol.grf.bz2' or '-.gz'. The compression formats which can be supported are the bzip2 format ('.bz2'), the gzip format ('.gz'), and the lzma format ('.lzma', on input only). dgmap and dgpart base on implementations of the MPI interface to spread work across the processing elements. They are therefore not likely to be run directly, but instead through some launcher command such as mpirun. OPTIONS
-bval Set maximum load imbalance ratio for graph partitioning or static mapping. When programs are used as clustering tools, this parame- ter sets the maximum load imbalance ratio for recursive bipartitions. Exclusive with the -m option. -copt Choose default mapping strategy according to one or several options among: b enforce load balance as much as possible. q privilege quality over speed (default). s privilege speed over quality. t enforce safety. x enforce scalability. It is exclusive with the -m option. -h Display some help. -mstrat Use parallel mapping strategy strat (see PT-Scotch user's manual for more information). -q (for dgpart) -qpwght (for dgmap) Use the programs as graph clustering tools instead of static mapping or graph partitioning tools. For dgpart, the number of parts will become the maximum cluster weight. For dgmap, this number pwght has to be passed after the option. -rpnum Set root process for centralized files (default is 0). -V Display program version and copyright. -vverb Set verbose mode to verb. It is a set of one of more characters which can be: m mapping information. s strategy information. t timing information. NOTE
At the time being (version 5.1), dgmap cannot compute full static mappings as gmap(1) does, but only partitions (that is, mappings onto unweighted or weighted complete graphs). Target architectures other than the 'cmplt' and 'wcmplt' ones will lead to an error message. EXAMPLES
Run dgpart on 5 processing elements to compute a partition into 7 parts of graph brol.grf and save the resulting ordering to file brol.map. $ mpirun -np 5 dgpart 7 brol.grf brol.map Run dgpart on 5 processing elements to partition into 7 parts the distributed graph stored on graph fragment files brol5-0.dgr to brol5-4.dgr, and save the resulting mapping to file brol.map (see dgscat(1) for an explanation of the '%p' and '%r' sequences in names of distributed graph fragments). $ mpirun -np 5 dgpart 7 brol%p-%r.dgr brol.map SEE ALSO
dgtst(1), dgscat(1), amk_grf(1), acpl(1), gmap(1), gmtst(1). PT-Scotch user's manual. AUTHOR
Francois Pellegrini <francois.pellegrini@labri.fr> September 01, 2011 dgmap(1)
Man Page

Featured Tech Videos