Home Man
Search
Today's Posts
Register

Linux & Unix Commands - Search Man Pages

CentOS 7.0 - man page for zggsvp (centos section 3)

zggsvp.f(3)						LAPACK						  zggsvp.f(3)

NAME
zggsvp.f -
SYNOPSIS
Functions/Subroutines subroutine zggsvp (JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK, TAU, WORK, INFO) ZGGSVP Function/Subroutine Documentation subroutine zggsvp (characterJOBU, characterJOBV, characterJOBQ, integerM, integerP, integerN, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( ldb, * )B, integerLDB, double precisionTOLA, double precisionTOLB, integerK, integerL, complex*16, dimension( ldu, * )U, integerLDU, complex*16, dimension( ldv, * )V, integerLDV, complex*16, dimension( ldq, * )Q, integerLDQ, integer, dimension( * )IWORK, double precision, dimension( * )RWORK, complex*16, dimension( * )TAU, complex*16, dimension( * )WORK, integerINFO) ZGGSVP Purpose: ZGGSVP computes unitary matrices U, V and Q such that N-K-L K L U**H*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; L ( 0 0 A23 ) M-K-L ( 0 0 0 ) N-K-L K L = K ( 0 A12 A13 ) if M-K-L < 0; M-K ( 0 0 A23 ) N-K-L K L V**H*B*Q = L ( 0 0 B13 ) P-L ( 0 0 0 ) where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H. This decomposition is the preprocessing step for computing the Generalized Singular Value Decomposition (GSVD), see subroutine ZGGSVD. Parameters: JOBU JOBU is CHARACTER*1 = 'U': Unitary matrix U is computed; = 'N': U is not computed. JOBV JOBV is CHARACTER*1 = 'V': Unitary matrix V is computed; = 'N': V is not computed. JOBQ JOBQ is CHARACTER*1 = 'Q': Unitary matrix Q is computed; = 'N': Q is not computed. M M is INTEGER The number of rows of the matrix A. M >= 0. P P is INTEGER The number of rows of the matrix B. P >= 0. N N is INTEGER The number of columns of the matrices A and B. N >= 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, A contains the triangular (or trapezoidal) matrix described in the Purpose section. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). B B is COMPLEX*16 array, dimension (LDB,N) On entry, the P-by-N matrix B. On exit, B contains the triangular matrix described in the Purpose section. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,P). TOLA TOLA is DOUBLE PRECISION TOLB TOLB is DOUBLE PRECISION TOLA and TOLB are the thresholds to determine the effective numerical rank of matrix B and a subblock of A. Generally, they are set to TOLA = MAX(M,N)*norm(A)*MAZHEPS, TOLB = MAX(P,N)*norm(B)*MAZHEPS. The size of TOLA and TOLB may affect the size of backward errors of the decomposition. K K is INTEGER L L is INTEGER On exit, K and L specify the dimension of the subblocks described in Purpose section. K + L = effective numerical rank of (A**H,B**H)**H. U U is COMPLEX*16 array, dimension (LDU,M) If JOBU = 'U', U contains the unitary matrix U. If JOBU = 'N', U is not referenced. LDU LDU is INTEGER The leading dimension of the array U. LDU >= max(1,M) if JOBU = 'U'; LDU >= 1 otherwise. V V is COMPLEX*16 array, dimension (LDV,P) If JOBV = 'V', V contains the unitary matrix V. If JOBV = 'N', V is not referenced. LDV LDV is INTEGER The leading dimension of the array V. LDV >= max(1,P) if JOBV = 'V'; LDV >= 1 otherwise. Q Q is COMPLEX*16 array, dimension (LDQ,N) If JOBQ = 'Q', Q contains the unitary matrix Q. If JOBQ = 'N', Q is not referenced. LDQ LDQ is INTEGER The leading dimension of the array Q. LDQ >= max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise. IWORK IWORK is INTEGER array, dimension (N) RWORK RWORK is DOUBLE PRECISION array, dimension (2*N) TAU TAU is COMPLEX*16 array, dimension (N) WORK WORK is COMPLEX*16 array, dimension (max(3*N,M,P)) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: The subroutine uses LAPACK subroutine ZGEQPF for the QR factorization with column pivoting to detect the effective numerical rank of the a matrix. It may be replaced by a better rank determination strategy. Definition at line 262 of file zggsvp.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 zggsvp.f(3)


All times are GMT -4. The time now is 01:15 AM.

Unix & Linux Forums Content Copyrightę1993-2018. All Rights Reserved.
UNIX.COM Login
Username:
Password:  
Show Password