
spftri.f(3) LAPACK spftri.f(3)
NAME
spftri.f 
SYNOPSIS
Functions/Subroutines
subroutine spftri (TRANSR, UPLO, N, A, INFO)
SPFTRI
Function/Subroutine Documentation
subroutine spftri (characterTRANSR, characterUPLO, integerN, real, dimension( 0: * )A,
integerINFO)
SPFTRI
Purpose:
SPFTRI computes the inverse of a real (symmetric) positive definite
matrix A using the Cholesky factorization A = U**T*U or A = L*L**T
computed by SPFTRF.
Parameters:
TRANSR
TRANSR is CHARACTER*1
= 'N': The Normal TRANSR of RFP A is stored;
= 'T': The Transpose TRANSR of RFP A is stored.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is REAL array, dimension ( N*(N+1)/2 )
On entry, the symmetric matrix A in RFP format. RFP format is
described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
then RFP A is (0:N,0:k1) when N is even; k=N/2. RFP A is
(0:N1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
the transpose of RFP A as defined when
TRANSR = 'N'. The contents of RFP A are defined by UPLO as
follows: If UPLO = 'U' the RFP A contains the nt elements of
upper packed A. If UPLO = 'L' the RFP A contains the elements
of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N
is odd. See the Note below for more details.
On exit, the symmetric inverse of the original matrix, in the
same storage format.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = i, the ith argument had an illegal value
> 0: if INFO = i, the (i,i) element of the factor U or L is
zero, and the inverse could not be computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
We first consider Rectangular Full Packed (RFP) Format when N is
even. We give an example where N = 6.
AP is Upper AP is Lower
00 01 02 03 04 05 00
11 12 13 14 15 10 11
22 23 24 25 20 21 22
33 34 35 30 31 32 33
44 45 40 41 42 43 44
55 50 51 52 53 54 55
Let TRANSR = 'N'. RFP holds AP as follows:
For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
three columns of AP upper. The lower triangle A(4:6,0:2) consists of
the transpose of the first three columns of AP upper.
For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
three columns of AP lower. The upper triangle A(0:2,0:2) consists of
the transpose of the last three columns of AP lower.
This covers the case N even and TRANSR = 'N'.
RFP A RFP A
03 04 05 33 43 53
13 14 15 00 44 54
23 24 25 10 11 55
33 34 35 20 21 22
00 44 45 30 31 32
01 11 55 40 41 42
02 12 22 50 51 52
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
transpose of RFP A above. One therefore gets:
RFP A RFP A
03 13 23 33 00 01 02 33 00 10 20 30 40 50
04 14 24 34 44 11 12 43 44 11 21 31 41 51
05 15 25 35 45 55 22 53 54 55 22 32 42 52
We then consider Rectangular Full Packed (RFP) Format when N is
odd. We give an example where N = 5.
AP is Upper AP is Lower
00 01 02 03 04 00
11 12 13 14 10 11
22 23 24 20 21 22
33 34 30 31 32 33
44 40 41 42 43 44
Let TRANSR = 'N'. RFP holds AP as follows:
For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
three columns of AP upper. The lower triangle A(3:4,0:1) consists of
the transpose of the first two columns of AP upper.
For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
three columns of AP lower. The upper triangle A(0:1,1:2) consists of
the transpose of the last two columns of AP lower.
This covers the case N odd and TRANSR = 'N'.
RFP A RFP A
02 03 04 00 33 43
12 13 14 10 11 44
22 23 24 20 21 22
00 33 34 30 31 32
01 11 44 40 41 42
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
transpose of RFP A above. One therefore gets:
RFP A RFP A
02 12 22 00 01 00 10 20 30 40 50
03 13 23 33 11 33 11 21 31 41 51
04 14 24 34 44 43 44 22 32 42 52
Definition at line 192 of file spftri.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.4.2 Tue Sep 25 2012 spftri.f(3) 
