Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

CentOS 7.0 - man page for slasq2 (centos section 3)

slasq2.f(3)							      LAPACK							       slasq2.f(3)

NAME
slasq2.f -
SYNOPSIS
Functions/Subroutines subroutine slasq2 (N, Z, INFO) SLASQ2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the qd Array Z to high relative accuracy. Used by sbdsqr and sstegr. Function/Subroutine Documentation subroutine slasq2 (integerN, real, dimension( * )Z, integerINFO) SLASQ2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the qd Array Z to high relative accuracy. Used by sbdsqr and sstegr. Purpose: SLASQ2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the qd array Z to high relative accuracy are computed to high relative accuracy, in the absence of denormalization, underflow and overflow. To see the relation of Z to the tridiagonal matrix, let L be a unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and let U be an upper bidiagonal matrix with 1's above and diagonal Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the symmetric tridiagonal to which it is similar. Note : SLASQ2 defines a logical variable, IEEE, which is true on machines which follow ieee-754 floating-point standard in their handling of infinities and NaNs, and false otherwise. This variable is passed to SLASQ3. Parameters: N N is INTEGER The number of rows and columns in the matrix. N >= 0. Z Z is REAL array, dimension ( 4*N ) On entry Z holds the qd array. On exit, entries 1 to N hold the eigenvalues in decreasing order, Z( 2*N+1 ) holds the trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 ) holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of shifts that failed. INFO INFO is INTEGER = 0: successful exit < 0: if the i-th argument is a scalar and had an illegal value, then INFO = -i, if the i-th argument is an array and the j-entry had an illegal value, then INFO = -(i*100+j) > 0: the algorithm failed = 1, a split was marked by a positive value in E = 2, current block of Z not diagonalized after 100*N iterations (in inner while loop). On exit Z holds a qd array with the same eigenvalues as the given Z. = 3, termination criterion of outer while loop not met (program created more than N unreduced blocks) Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Further Details: Local Variables: I0:N0 defines a current unreduced segment of Z. The shifts are accumulated in SIGMA. Iteration count is in ITER. Ping-pong is controlled by PP (alternates between 0 and 1). Definition at line 113 of file slasq2.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 slasq2.f(3)
All times are GMT -4. The time now is 02:46 AM.

Unix & Linux Forums Content Copyright 1993-2018. All Rights Reserved.
UNIX.COM Login
Username:
Password:  
Show Password





Not a Forum Member?
Forgot Password?