Visit Our UNIX and Linux User Community

Linux and UNIX Man Pages

Test Your Knowledge in Computers #455
Difficulty: Medium
Java was originally developed at Oracle starting in December 1990.
True or False?
Linux & Unix Commands - Search Man Pages

sgeql2.f(3) [centos man page]

sgeql2.f(3)							      LAPACK							       sgeql2.f(3)

NAME
sgeql2.f - SYNOPSIS
Functions/Subroutines subroutine sgeql2 (M, N, A, LDA, TAU, WORK, INFO) SGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm. Function/Subroutine Documentation subroutine sgeql2 (integerM, integerN, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK, integerINFO) SGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm. Purpose: SGEQL2 computes a QL factorization of a real m by n matrix A: A = Q * L. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is REAL array, dimension (LDA,N) On entry, the m by n matrix A. On exit, if m >= n, the lower triangle of the subarray A(m-n+1:m,1:n) contains the n by n lower triangular matrix L; if m <= n, the elements on and below the (n-m)-th superdiagonal contain the m by n lower trapezoidal matrix L; the remaining elements, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is REAL array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(k) . . . H(2) H(1), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i). Definition at line 124 of file sgeql2.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 sgeql2.f(3)

Check Out this Related Man Page

sgerq2.f(3)							      LAPACK							       sgerq2.f(3)

NAME
sgerq2.f - SYNOPSIS
Functions/Subroutines subroutine sgerq2 (M, N, A, LDA, TAU, WORK, INFO) SGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm. Function/Subroutine Documentation subroutine sgerq2 (integerM, integerN, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK, integerINFO) SGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm. Purpose: SGERQ2 computes an RQ factorization of a real m by n matrix A: A = R * Q. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is REAL array, dimension (LDA,N) On entry, the m by n matrix A. On exit, if m <= n, the upper triangle of the subarray A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; if m >= n, the elements on and above the (m-n)-th subdiagonal contain the m by n upper trapezoidal matrix R; the remaining elements, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is REAL array, dimension (M) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i). Definition at line 124 of file sgerq2.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 sgerq2.f(3)

Featured Tech Videos