# dlar2v(3) [centos man page]

```dlar2v.f(3)							      LAPACK							       dlar2v.f(3)

NAME
dlar2v.f -

SYNOPSIS
Functions/Subroutines
subroutine dlar2v (N, X, Y, Z, INCX, C, S, INCC)
DLAR2V applies a vector of plane rotations with real cosines and real sines from both sides to a sequence of 2-by-2 symmetric/Hermitian
matrices.

Function/Subroutine Documentation
subroutine dlar2v (integerN, double precision, dimension( * )X, double precision, dimension( * )Y, double precision, dimension( * )Z,
integerINCX, double precision, dimension( * )C, double precision, dimension( * )S, integerINCC)
DLAR2V applies a vector of plane rotations with real cosines and real sines from both sides to a sequence of 2-by-2 symmetric/Hermitian
matrices.

Purpose:

DLAR2V applies a vector of real plane rotations from both sides to
a sequence of 2-by-2 real symmetric matrices, defined by the elements
of the vectors x, y and z. For i = 1,2,...,n

( x(i)  z(i) ) := (  c(i)  s(i) ) ( x(i)  z(i) ) ( c(i) -s(i) )
( z(i)  y(i) )	 ( -s(i)  c(i) ) ( z(i)  y(i) ) ( s(i)	c(i) )

Parameters:
N

N is INTEGER
The number of plane rotations to be applied.

X

X is DOUBLE PRECISION array,
dimension (1+(N-1)*INCX)
The vector x.

Y

Y is DOUBLE PRECISION array,
dimension (1+(N-1)*INCX)
The vector y.

Z

Z is DOUBLE PRECISION array,
dimension (1+(N-1)*INCX)
The vector z.

INCX

INCX is INTEGER
The increment between elements of X, Y and Z. INCX > 0.

C

C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.

S

S is DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
The sines of the plane rotations.

INCC

INCC is INTEGER
The increment between elements of C and S. INCC > 0.

Author:
Univ. of Tennessee

Univ. of California Berkeley

NAG Ltd.

Date:
September 2012

Definition at line 111 of file dlar2v.f.

Author
Generated automatically by Doxygen for LAPACK from the source code.

Version 3.4.2							  Tue Sep 25 2012						       dlar2v.f(3)```

## Check Out this Related Man Page

```zlar2v.f(3)							      LAPACK							       zlar2v.f(3)

NAME
zlar2v.f -

SYNOPSIS
Functions/Subroutines
subroutine zlar2v (N, X, Y, Z, INCX, C, S, INCC)
ZLAR2V applies a vector of plane rotations with real cosines and complex sines from both sides to a sequence of 2-by-2
symmetric/Hermitian matrices.

Function/Subroutine Documentation
subroutine zlar2v (integerN, complex*16, dimension( * )X, complex*16, dimension( * )Y, complex*16, dimension( * )Z, integerINCX, double
precision, dimension( * )C, complex*16, dimension( * )S, integerINCC)
ZLAR2V applies a vector of plane rotations with real cosines and complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian
matrices.

Purpose:

ZLAR2V applies a vector of complex plane rotations with real cosines
from both sides to a sequence of 2-by-2 complex Hermitian matrices,
defined by the elements of the vectors x, y and z. For i = 1,2,...,n

(       x(i)  z(i) ) :=
( conjg(z(i)) y(i) )

(  c(i) conjg(s(i)) ) (       x(i)  z(i) ) ( c(i) -conjg(s(i)) )
( -s(i)       c(i)  ) ( conjg(z(i)) y(i) ) ( s(i)	  c(i)	)

Parameters:
N

N is INTEGER
The number of plane rotations to be applied.

X

X is COMPLEX*16 array, dimension (1+(N-1)*INCX)
The vector x; the elements of x are assumed to be real.

Y

Y is COMPLEX*16 array, dimension (1+(N-1)*INCX)
The vector y; the elements of y are assumed to be real.

Z

Z is COMPLEX*16 array, dimension (1+(N-1)*INCX)
The vector z.

INCX

INCX is INTEGER
The increment between elements of X, Y and Z. INCX > 0.

C

C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.

S

S is COMPLEX*16 array, dimension (1+(N-1)*INCC)
The sines of the plane rotations.

INCC

INCC is INTEGER
The increment between elements of C and S. INCC > 0.

Author:
Univ. of Tennessee

Univ. of California Berkeley