Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

dlanst(3) [centos man page]

dlanst.f(3)							      LAPACK							       dlanst.f(3)

NAME
dlanst.f - SYNOPSIS
Functions/Subroutines DOUBLE PRECISION function dlanst (NORM, N, D, E) DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix. Function/Subroutine Documentation DOUBLE PRECISION function dlanst (characterNORM, integerN, double precision, dimension( * )D, double precision, dimension( * )E) DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix. Purpose: DLANST returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix A. Returns: DLANST DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. Parameters: NORM NORM is CHARACTER*1 Specifies the value to be returned in DLANST as described above. N N is INTEGER The order of the matrix A. N >= 0. When N = 0, DLANST is set to zero. D D is DOUBLE PRECISION array, dimension (N) The diagonal elements of A. E E is DOUBLE PRECISION array, dimension (N-1) The (n-1) sub-diagonal or super-diagonal elements of A. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Definition at line 101 of file dlanst.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 dlanst.f(3)

Check Out this Related Man Page

slanst.f(3)							      LAPACK							       slanst.f(3)

NAME
slanst.f - SYNOPSIS
Functions/Subroutines REAL function slanst (NORM, N, D, E) SLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix. Function/Subroutine Documentation REAL function slanst (characterNORM, integerN, real, dimension( * )D, real, dimension( * )E) SLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix. Purpose: SLANST returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix A. Returns: SLANST SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. Parameters: NORM NORM is CHARACTER*1 Specifies the value to be returned in SLANST as described above. N N is INTEGER The order of the matrix A. N >= 0. When N = 0, SLANST is set to zero. D D is REAL array, dimension (N) The diagonal elements of A. E E is REAL array, dimension (N-1) The (n-1) sub-diagonal or super-diagonal elements of A. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Definition at line 101 of file slanst.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 slanst.f(3)
Man Page

Featured Tech Videos