dgemqrt.f(3) [centos man page]

dgemqrt.f(3)							      LAPACK							      dgemqrt.f(3)

NAME
dgemqrt.f - SYNOPSIS
Functions/Subroutines subroutine dgemqrt (SIDE, TRANS, M, N, K, NB, V, LDV, T, LDT, C, LDC, WORK, INFO) DGEMQRT Function/Subroutine Documentation subroutine dgemqrt (characterSIDE, characterTRANS, integerM, integerN, integerK, integerNB, double precision, dimension( ldv, * )V, integerLDV, double precision, dimension( ldt, * )T, integerLDT, double precision, dimension( ldc, * )C, integerLDC, double precision, dimension( * )WORK, integerINFO) DGEMQRT Purpose: DGEMQRT overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q C C Q TRANS = 'T': Q**T C C Q**T where Q is a real orthogonal matrix defined as the product of K elementary reflectors: Q = H(1) H(2) . . . H(K) = I - V T V**T generated using the compact WY representation as returned by DGEQRT. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'. Parameters: SIDE SIDE is CHARACTER*1 = 'L': apply Q or Q**T from the Left; = 'R': apply Q or Q**T from the Right. TRANS TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'C': Transpose, apply Q**T. M M is INTEGER The number of rows of the matrix C. M >= 0. N N is INTEGER The number of columns of the matrix C. N >= 0. K K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0. NB NB is INTEGER The block size used for the storage of T. K >= NB >= 1. This must be the same value of NB used to generate T in CGEQRT. V V is DOUBLE PRECISION array, dimension (LDV,K) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by CGEQRT in the first K columns of its array argument A. LDV LDV is INTEGER The leading dimension of the array V. If SIDE = 'L', LDA >= max(1,M); if SIDE = 'R', LDA >= max(1,N). T T is DOUBLE PRECISION array, dimension (LDT,K) The upper triangular factors of the block reflectors as returned by CGEQRT, stored as a NB-by-N matrix. LDT LDT is INTEGER The leading dimension of the array T. LDT >= NB. C C is DOUBLE PRECISION array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q C, Q**T C, C Q**T or C Q. LDC LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M). WORK WORK is DOUBLE PRECISION array. The dimension of WORK is N*NB if SIDE = 'L', or M*NB if SIDE = 'R'. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 168 of file dgemqrt.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 dgemqrt.f(3)

Check Out this Related Man Page

sgemqrt.f(3)							      LAPACK							      sgemqrt.f(3)

NAME
sgemqrt.f - SYNOPSIS
Functions/Subroutines subroutine sgemqrt (SIDE, TRANS, M, N, K, NB, V, LDV, T, LDT, C, LDC, WORK, INFO) SGEMQRT Function/Subroutine Documentation subroutine sgemqrt (characterSIDE, characterTRANS, integerM, integerN, integerK, integerNB, real, dimension( ldv, * )V, integerLDV, real, dimension( ldt, * )T, integerLDT, real, dimension( ldc, * )C, integerLDC, real, dimension( * )WORK, integerINFO) SGEMQRT Purpose: SGEMQRT overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q C C Q TRANS = 'T': Q**T C C Q**T where Q is a real orthogonal matrix defined as the product of K elementary reflectors: Q = H(1) H(2) . . . H(K) = I - V T V**T generated using the compact WY representation as returned by SGEQRT. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'. Parameters: SIDE SIDE is CHARACTER*1 = 'L': apply Q or Q**T from the Left; = 'R': apply Q or Q**T from the Right. TRANS TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'T': Transpose, apply Q**T. M M is INTEGER The number of rows of the matrix C. M >= 0. N N is INTEGER The number of columns of the matrix C. N >= 0. K K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0. NB NB is INTEGER The block size used for the storage of T. K >= NB >= 1. This must be the same value of NB used to generate T in CGEQRT. V V is REAL array, dimension (LDV,K) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by CGEQRT in the first K columns of its array argument A. LDV LDV is INTEGER The leading dimension of the array V. If SIDE = 'L', LDA >= max(1,M); if SIDE = 'R', LDA >= max(1,N). T T is REAL array, dimension (LDT,K) The upper triangular factors of the block reflectors as returned by CGEQRT, stored as a NB-by-N matrix. LDT LDT is INTEGER The leading dimension of the array T. LDT >= NB. C C is REAL array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q C, Q**T C, C Q**T or C Q. LDC LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M). WORK WORK is REAL array. The dimension of WORK is N*NB if SIDE = 'L', or M*NB if SIDE = 'R'. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 168 of file sgemqrt.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 sgemqrt.f(3)
Man Page