Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

_syscall(2) [centos man page]

_SYSCALL(2)						     Linux Programmer's Manual						       _SYSCALL(2)

NAME
_syscall - invoking a system call without library support (OBSOLETE) SYNOPSIS
#include <linux/unistd.h> A _syscall macro desired system call DESCRIPTION
The important thing to know about a system call is its prototype. You need to know how many arguments, their types, and the function return type. There are seven macros that make the actual call into the system easier. They have the form: _syscallX(type,name,type1,arg1,type2,arg2,...) where X is 0-6, which are the number of arguments taken by the system call type is the return type of the system call name is the name of the system call typeN is the Nth argument's type argN is the name of the Nth argument These macros create a function called name with the arguments you specify. Once you include the _syscall() in your source file, you call the system call by name. FILES
/usr/include/linux/unistd.h CONFORMING TO
The use of these macros is Linux-specific, and deprecated. NOTES
Starting around kernel 2.6.18, the _syscall macros were removed from header files supplied to user space. Use syscall(2) instead. (Some architectures, notably ia64, never provided the _syscall macros; on those architectures, syscall(2) was always required.) The _syscall() macros do not produce a prototype. You may have to create one, especially for C++ users. System calls are not required to return only positive or negative error codes. You need to read the source to be sure how it will return errors. Usually, it is the negative of a standard error code, for example, -EPERM. The _syscall() macros will return the result r of the system call when r is nonnegative, but will return -1 and set the variable errno to -r when r is negative. For the error codes, see errno(3). When defining a system call, the argument types must be passed by-value or by-pointer (for aggregates like structs). EXAMPLE
#include <stdio.h> #include <stdlib.h> #include <errno.h> #include <linux/unistd.h> /* for _syscallX macros/related stuff */ #include <linux/kernel.h> /* for struct sysinfo */ _syscall1(int, sysinfo, struct sysinfo *, info); /* Note: if you copy directly from the nroff source, remember to REMOVE the extra backslashes in the printf statement. */ int main(void) { struct sysinfo s_info; int error; error = sysinfo(&s_info); printf("code error = %d ", error); printf("Uptime = %lds Load: 1 min %lu / 5 min %lu / 15 min %lu " "RAM: total %lu / free %lu / shared %lu " "Memory in buffers = %lu Swap: total %lu / free %lu " "Number of processes = %d ", s_info.uptime, s_info.loads[0], s_info.loads[1], s_info.loads[2], s_info.totalram, s_info.freeram, s_info.sharedram, s_info.bufferram, s_info.totalswap, s_info.freeswap, s_info.procs); exit(EXIT_SUCCESS); } Sample output code error = 0 uptime = 502034s Load: 1 min 13376 / 5 min 5504 / 15 min 1152 RAM: total 15343616 / free 827392 / shared 8237056 Memory in buffers = 5066752 Swap: total 27881472 / free 24698880 Number of processes = 40 SEE ALSO
intro(2), syscall(2), errno(3) COLOPHON
This page is part of release 3.53 of the Linux man-pages project. A description of the project, and information about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/. Linux 2007-12-19 _SYSCALL(2)

Check Out this Related Man Page

INTRO(2)						     Linux Programmer's Manual							  INTRO(2)

NAME
intro - Introduction to system calls DESCRIPTION
Section 2 of the manual describes the Linux system calls. A system call is an entry point into the Linux kernel. Usually, system calls are not invoked directly: instead, most system calls have corresponding C library wrapper functions which perform the steps required (e.g., trapping to kernel mode) in order to invoke the system call. Thus, making a system call looks the same as invoking a normal library func- tion. For a list of the Linux system calls, see syscalls(2). RETURN VALUE
On error, most system calls return a negative error number (i.e., the negated value of one of the constants described in errno(3)). The C library wrapper hides this detail from the caller: when a system call returns a negative value, the wrapper copies the absolute value into the errno variable, and returns -1 as the return value of the wrapper. The value returned by a successful system call depends on the call. Many system calls return 0 on success, but some can return nonzero values from a successful call. The details are described in the individual manual pages. In some cases, the programmer must define a feature test macro in order to obtain the declaration of a system call from the header file specified in the man page SYNOPSIS section. (Where required, these feature test macros must be defined before including any header files.) In such cases, the required macro is described in the man page. For further information on feature test macros, see fea- ture_test_macros(7). CONFORMING TO
Certain terms and abbreviations are used to indicate Unix variants and standards to which calls in this section conform. See standards(7). NOTES
Calling Directly In most cases, it is unnecessary to invoke a system call directly, but there are times when the Standard C library does not implement a nice wrapper function for you. In this case, the programmer must manually invoke the system call using syscall(2). Historically, this was also possible using one of the _syscall macros described in _syscall(2). Authors and Copyright Conditions Look at the header of the manual page source for the author(s) and copyright conditions. Note that these can be different from page to page! SEE ALSO
_syscall(2), syscall(2), errno(3), feature_test_macros(7), standards(7) COLOPHON
This page is part of release 3.27 of the Linux man-pages project. A description of the project, and information about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/. Linux 2010-09-10 INTRO(2)
Man Page