Sponsored Content
Full Discussion: Floppy drive problem.
Operating Systems BSD Floppy drive problem. Post 44002 by _cs on Wednesday 26th of November 2003 10:42:46 PM
Old 11-26-2003
Question Floppy drive problem.

My FreeBSD install at ad0s1, and Windows 2000 at ad2s1.
Everytime I start my FreeBSD, it shows me this message:
fdc0: cmd 3 failed at out byte 1 of 3
pmtimer 0 on isa0
fdc0: cannot reserve I/O port range (6 ports)

My Floppy drive info:
0x03F2 - 0x03F3
0x03F4 - 0x03F5
0x03F7 - 0x03F7
IRQ 6
channel 2

When I'm using FreeBSD 4.7, it can detect my fd0.

Thanks.
 

8 More Discussions You Might Find Interesting

1. UNIX for Dummies Questions & Answers

Accessing floppy drive with solaris 8 Intel version

Ok heres the situation, I bought solaris 8 (intel version) for my home pc to practice with, I'm having problems accessing my floppy drive, I thought it would be in my dev or devices folder but its not there Please help, I'm very new to unix (2 Replies)
Discussion started by: eloquent99
2 Replies

2. HP-UX

scsi floppy drive addressing

Does anyone know of a site that documents the various addressing schemes used with SCSI floppy disk drives? (5 Replies)
Discussion started by: Drew_Harrison
5 Replies

3. Solaris

Solaris 10 floppy drive problem

I have inserted a diskette but I don't see the files nor the floppy drive. These are the commands I ran. #volcheck -v #rmformat With rmformat, only the CD-ROM is listed. I don't see any floppy drive. How can I get my floppy drive to work?? I know it is connected b/c when I boot in XP, I... (0 Replies)
Discussion started by: kungpow
0 Replies

4. Solaris

Sunfire 280R Can't Recognize Floppy Drive

Greetings all, I'm in a bit of a situation. I have this Sunfire 280R system that did not have a floppy drive in it, yet we needed one. We grabbed one from another Sun box we had laying around unused, and installed it. The system couldnt recognize it. Tried another floppy drive (non-sun) and... (4 Replies)
Discussion started by: snackiesmores
4 Replies

5. SCO

mounting USB floppy drive /Flash drive in OSR 6.0

Can anybody help me out to mount USB flash /floppy drive in sco openserver 6.0 . (5 Replies)
Discussion started by: sureshdrajan
5 Replies

6. Ubuntu

Boot Floppy made in external drive

there is probably another post about this, i just can't find it on unix.com or google. basically, i am trying to make a boot floppy via CLI/terminal. the problem is that i use an external drive. when i do the first couple of steps, i get rejected. when i do the mounting and unmounting, all the... (4 Replies)
Discussion started by: Texasone
4 Replies

7. SCO

Sco 5.0.7 on ibm server, no floppy drive.

I cannot install sco on this particular ibm server because sco cannot find the raid controller and thefore the logical drive. I have a floppy disk that I use in other machines when boot: shows on the screen. I usually type restart link=ad320 and it works but this time i have no floppy drive. ... (1 Reply)
Discussion started by: iNetForce
1 Replies

8. UNIX for Dummies Questions & Answers

UNIX System V Mount Floppy Drive

I have recently installed UNIX SysV on an old computer to try and expand my general knowledge of computers. I want to install NASM on it so I can begin working on some assembly language, but I am having trouble accessing the floppy disk with the files I need. I've tried running mount /dev/fd0... (23 Replies)
Discussion started by: BrentBANKS
23 Replies
FDC(4)							   BSD Kernel Interfaces Manual 						    FDC(4)

NAME
fdc -- PC architecture floppy disk controller driver SYNOPSIS
device fdc In /boot/device.hints: hint.fdc.0.at="isa" hint.fdc.0.port="0x3F0" hint.fdc.0.irq="6" hint.fdc.0.drq="2" hint.fdc.0.flags="0x0" hint.fd.0.at="fdc0" hint.fd.0.drive="0" hint.fd.0.flags="0x0" hint.fd.1.at="fdc0" hint.fd.1.drive="1" hint.fd.1.flags="0x0" DESCRIPTION
Device Usage This driver provides access to floppy disk drives. Floppy disks using either FM (single-density) or MFM (double or high-density) recording can be handled. Floppy disk controllers can connect up to four drives each. The fdc driver can currently handle up to two drives per controller (or four drives on ACPI). Upon driver initialization, an attempt is made to find out the type of the floppy controller in use. The known controller types are either the original NE765 or i8272 chips, or alternatively enhanced controllers that are compatible with the NE72065 or i82077 chips. These enhanced controllers (among other enhancements) implement a FIFO for floppy data transfers that will automatically be enabled once an enhanced chip has been detected. This FIFO activation can be disabled using the per-controller flags value of 0x1. By default, this driver creates a single device node /dev/fdN for each attached drive with number N. For historical reasons, device nodes that use a trailing UFS-style partition letter (ranging from 'a' through 'h') can also be accessed, which will be implemented as symbolic links to the main device node. Accessing the main device node will attempt to autodetect the density of the available medium for multi-density devices. Thus it is possible to use either a 720 KB medium or a 1440 KB medium in a high-density 3.5 inch standard floppy drive. Normally, this autodetection will only happen once at the first call to open(2) for the device after inserting the medium. This assumes the drive offers proper changeline support so media changes can be detected by the driver. To indicate a drive that does not have the changeline support, this can be overridden using the per-drive device flags value of 0x10 (causing each call to open(2) to perform the autodetection). When trying to use a floppy device with special-density media, other device nodes can be created, of the form /dev/fdN.MMMM, where N is the drive number, and MMMM is a number between one and four digits describing the device density. Up to 15 additional subdevices per drive can be created that way. The administrator is free to decide on a policy how to assign these numbers. The two common policies are to either implement subdevices numbered 1 through 15, or to use a number that describes the medium density in kilobytes. Initially, each of those devices will be configured to the maximal density that is possible for the drive type (like 1200 KB for 5.25 inch HD drives or 1440 KB for 3.5 inch HD drives). The desired density to be used on that subdevice needs to be configured using fdcontrol(8). Drive types are configured using the lower four bits of the per-drive device flags. The following values can be specified: 1 5.25 inch double-density device with 40 cylinders (360 KB native capacity) 2 5.25 inch high-density device with 80 cylinders (1200 KB native capacity) 3 3.5 inch double-density device with 80 cylinders (720 KB native capacity) 4 3.5 inch high-density device with 80 cylinders (1440 KB native capacity) 5 3.5 inch extra-density device with 80 cylinders (2880 KB native capacity, usage currently restricted to at most 1440 KB media) 6 Same as type 5, available for compatibility with some BIOSes On IA32 architectures, the drive type can be specified as 0 for the drives. In that case, the CMOS configuration memory will be consulted to obtain the value for that drive. The ACPI probe automatically determines these values via the _FDE and _FDI methods, but this can be over- ridden by specifying a drive type hint. Normally, each configured drive will be probed at initialization time, using a short seek sequence. This is intended to find out about drives that have been configured but are actually missing or otherwise not responding. (The ACPI probe method does not perform this seek.) In some environments (like laptops with detachable drives), it might be desirable to bypass this drive probe, and pretend a drive to be there so the driver autoconfiguration will work even if the drive is currently not present. For that purpose, a per-drive device flags value of 0x20 needs to be specified. Programming Interface In addition to the normal read and write functionality, the fdc driver offers a number of configurable options using ioctl(2). In order to access any of this functionality, programmers need to include the header file <sys/fdcio.h> into their programs. The call to open(2) can be performed in two possible ways. When opening the device without the O_NONBLOCK flag set, the device is opened in a normal way, which would cause the main device nodes to perform automatic media density selection, and which will yield a file descriptor that is fully available for any I/O operation or any of the following ioctl(2) commands. When opening the device with O_NONBLOCK set, automatic media density selection will be bypassed, and the device remains in a half-opened state. No actual I/O operations are possible, but many of the ioctl(2) commands described below can be performed. This mode is intended for access to the device without the requirement to have an accessible media present, like for status inquiries to the drive, or in order to for- mat a medium. O_NONBLOCK needs to be cleared before I/O operations are possible on the descriptor, which requires a prior specification of the density using the FD_STYPE command (see below). Operations that are not allowed on the half-opened descriptor will cause an error value of EAGAIN. The following ioctl(2) commands are currently available: FD_FORM Used to format a floppy disk medium. Third argument is a pointer to a struct fd_formb specifying which track to format, and which parameters to fill into the ID fields of the floppy disk medium. FD_GTYPE Returns the current density definition record for the selected device. Third argument is a pointer to struct fd_type. FD_STYPE Adjusts the density definition of the selected device. Third argument is a pointer to struct fd_type. For the fixed-density sub- devices (1 through 15 per drive), this operation is restricted to a process with superuser privileges. For the auto-selecting subdevice 0, the operation is temporarily allowed to any process, but this setting will be lost again upon the next autoselection. This can be used when formatting a new medium (which will require to open the device using O_NONBLOCK, and thus to later adjust the density using FD_STYPE). FD_GOPTS Obtain the current drive options. Third argument is a pointer to int, containing a bitwise union of the following possible flag values: FDOPT_NORETRY Do not automatically retry operations upon failure. FDOPT_NOERRLOG Do not cause ``hard error'' kernel logs for failed I/O operations. FDOPT_NOERROR Do not indicate I/O errors when returning from read(2) or write(2) system calls. The caller is assumed to use FD_GSTAT calls in order to inquire about the success of each operation. This is intended to allow even erroneous data from bad blocks to be retrieved using normal I/O operations. FDOPT_AUTOSEL Device performs automatic density selection. Unlike the above flags, this one is read-only. FD_SOPTS Set device options, see above for their meaning. Third argument is a pointer to int. Drive options will always be cleared when closing the descriptor. FD_DEBUG Set the driver debug level. Third argument is a pointer to int, level 0 turns off all debugging. Only applicable if the driver has been configured with options FDC_DEBUG. FD_CLRERR Clear the internal low-level error counter. Normally, controller-level I/O errors are only logged up to FDC_ERRMAX errors (cur- rently defined to 100). This command resets the counter. Requires superuser privileges. FD_READID Read one sector ID field from the floppy disk medium. Third argument is a pointer to struct fdc_readid, where the read data will be returned. Can be used to analyze a floppy disk medium. FD_GSTAT Return the recent floppy disk controller status, if available. Third argument is a pointer to struct fdc_status, where the status registers (ST0, ST1, ST2, C, H, R, and N) are being returned. EINVAL will be caused if no recent status is available. FD_GDTYPE Returns the floppy disk drive type. Third argument is a pointer to enum fd_drivetype. This type is the same as being used in the per-drive configuration flags, or in the CMOS configuration data or ACPI namespace on IA32 systems. FILES
/dev/fd* floppy disk device nodes SEE ALSO
fdformat(1), fdread(1), fdwrite(1), ioctl(2), open(2), read(2), write(2), fdcontrol(8) AUTHORS
This man page was initially written by Wilko Bulte, and later vastly rewritten by Jorg Wunsch. BSD
May 11, 2006 BSD
All times are GMT -4. The time now is 03:19 PM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy