Sponsored Content
Full Discussion: clear memory
Top Forums UNIX for Dummies Questions & Answers clear memory Post 37628 by thehoghunter on Tuesday 24th of June 2003 09:33:32 AM
Old 06-24-2003
See this info:

FAQ.org - AIX Memory - note # 6
Quote:
Why does the "fre" field from vmstat sometimes show lots of free
RAM pages?

This will happen after an application that used a lot of RAM via
"working" storage (not NFS storage, and not disk file or "persistent"
storage) exits. When RAM pages that were used by working storage (a
program's stack and data area) are no longer needed, there is no need to
leave them around. AIX completely frees these RAM pages. The time to
access these pages versus a RAM page holding a "sync'd" mapped file is
almost identical. Therefore, there is no need to periodically "flush" RAM.
 

9 More Discussions You Might Find Interesting

1. UNIX for Advanced & Expert Users

Shared memory shortage but lots of unused memory

I am running HP-UX B.11.11. I'm increasing a parameter for a database engine so that it uses more memory to buffer the disk drive (to speed up performance). I have over 5GB of memory not being used. But when I try to start the DB with the increased buffer parameter I get told. "Not... (1 Reply)
Discussion started by: cjcamaro
1 Replies

2. Programming

how to round up a memory address(memory alignment problem)

Hi, I try to marshal a unsigned int and a char * into a buffer, and then unmarshal them later to get them out. I need to put the char * in the front and unsigned int at the end of the buffer. However, my system always give me "BUS ERROR". I am using Sun Sparcs Sloris 2.10. My code to marshal... (6 Replies)
Discussion started by: nj302
6 Replies

3. SCO

Clear / Remove / Create Shared Memory...

Hi all... am not so much brilliant in this area... here i think many good hearted peoples around... so if anybody have intention to reply for my problem please give me a cut and clear picture of how... Thanks. ok comming to my problem... In our MHC server (Sco Unix 4.*) running 19 C process... (1 Reply)
Discussion started by: yocks
1 Replies

4. Solaris

How to find Total and Free Physical Memory and Logical Memory in SOLARIS 9

Hi, Im working on Solaris 9 on SPARC-32 bit running on an Ultra-80, and I have to find out the following:- 1. Total Physical Memory in the system(total RAM). 2. Available Physical Memory(i.e. RAM Usage) 3. Total (Logical) Memory in the system 4. Available (Logical) Memory. I know... (4 Replies)
Discussion started by: 0ktalmagik
4 Replies

5. Programming

How to deal with lots of data in memory in order not to run out of memory

Hi, I'm trying to learn how to manage memory when I have to deal with lots of data. Basically I'm indexing a huge file (5GB, but it can be bigger), by creating tables that holds offset <-> startOfSomeData information. Currently I'm mapping the whole file at once (yep!) but of course the... (1 Reply)
Discussion started by: emitrax
1 Replies

6. Solaris

restrcit physical memory with zone.max-locked-memory

Is it possible to restrict physical memory in solaris zone with zone.max-locked-memory just like we can do with rcapd ? I do not want to used rcapd (1 Reply)
Discussion started by: fugitive
1 Replies

7. Solaris

clear cache memory

hi all, i have noticed that my server has 64 GB RAM and i have application in this server but the server has free memory only 15% and utilized 85% however it didn't eat from swap . does any parameter can be configured in kernel to make the system clear memory from cache like linux i found... (4 Replies)
Discussion started by: maxim42
4 Replies

8. Solaris

[DOUBT] Memory high in idle process on Solaris 10 (Memory Utilization > 90%)

Hi Experts, Our servers running Solaris 10 with SAP Application. The memory utilization always >90%, but the process on SAP is too less even nothing. Why memory utilization on solaris always looks high? I have statement about memory on solaris, is this true: Memory in solaris is used for... (4 Replies)
Discussion started by: edydsuranta
4 Replies

9. UNIX for Dummies Questions & Answers

Best ways to get clear info about CPU and Memory

Hello all i did search the web and found allot of answers but im confused what are the best ways to get this info via Linux default commands 1. current Cpu Usage in Percent 2. current Memory Usage In Bytes 3. current Memory Available In Bytes Thanks! (2 Replies)
Discussion started by: umen
2 Replies
MLOCK(2)						     Linux Programmer's Manual							  MLOCK(2)

NAME
mlock, munlock, mlockall, munlockall - lock and unlock memory SYNOPSIS
#include <sys/mman.h> int mlock(const void *addr, size_t len); int munlock(const void *addr, size_t len); int mlockall(int flags); int munlockall(void); DESCRIPTION
mlock() and mlockall() respectively lock part or all of the calling process's virtual address space into RAM, preventing that memory from being paged to the swap area. munlock() and munlockall() perform the converse operation, respectively unlocking part or all of the calling process's virtual address space, so that pages in the specified virtual address range may once more to be swapped out if required by the kernel memory manager. Memory locking and unlocking are performed in units of whole pages. mlock() and munlock() mlock() locks pages in the address range starting at addr and continuing for len bytes. All pages that contain a part of the specified address range are guaranteed to be resident in RAM when the call returns successfully; the pages are guaranteed to stay in RAM until later unlocked. munlock() unlocks pages in the address range starting at addr and continuing for len bytes. After this call, all pages that contain a part of the specified memory range can be moved to external swap space again by the kernel. mlockall() and munlockall() mlockall() locks all pages mapped into the address space of the calling process. This includes the pages of the code, data and stack seg- ment, as well as shared libraries, user space kernel data, shared memory, and memory-mapped files. All mapped pages are guaranteed to be resident in RAM when the call returns successfully; the pages are guaranteed to stay in RAM until later unlocked. The flags argument is constructed as the bitwise OR of one or more of the following constants: MCL_CURRENT Lock all pages which are currently mapped into the address space of the process. MCL_FUTURE Lock all pages which will become mapped into the address space of the process in the future. These could be for instance new pages required by a growing heap and stack as well as new memory mapped files or shared memory regions. If MCL_FUTURE has been specified, then a later system call (e.g., mmap(2), sbrk(2), malloc(3)), may fail if it would cause the number of locked bytes to exceed the permitted maximum (see below). In the same circumstances, stack growth may likewise fail: the kernel will deny stack expansion and deliver a SIGSEGV signal to the process. munlockall() unlocks all pages mapped into the address space of the calling process. RETURN VALUE
On success these system calls return 0. On error, -1 is returned, errno is set appropriately, and no changes are made to any locks in the address space of the process. ERRORS
ENOMEM (Linux 2.6.9 and later) the caller had a nonzero RLIMIT_MEMLOCK soft resource limit, but tried to lock more memory than the limit permitted. This limit is not enforced if the process is privileged (CAP_IPC_LOCK). ENOMEM (Linux 2.4 and earlier) the calling process tried to lock more than half of RAM. EPERM (Linux 2.6.9 and later) the caller was not privileged (CAP_IPC_LOCK) and its RLIMIT_MEMLOCK soft resource limit was 0. EPERM (Linux 2.6.8 and earlier) The calling process has insufficient privilege to call munlockall(). Under Linux the CAP_IPC_LOCK capa- bility is required. For mlock() and munlock(): EAGAIN Some or all of the specified address range could not be locked. EINVAL len was negative. EINVAL (Not on Linux) addr was not a multiple of the page size. ENOMEM Some of the specified address range does not correspond to mapped pages in the address space of the process. For mlockall(): EINVAL Unknown flags were specified. For munlockall(): EPERM (Linux 2.6.8 and earlier) The caller was not privileged (CAP_IPC_LOCK). CONFORMING TO
POSIX.1-2001, SVr4. AVAILABILITY
On POSIX systems on which mlock() and munlock() are available, _POSIX_MEMLOCK_RANGE is defined in <unistd.h> and the number of bytes in a page can be determined from the constant PAGESIZE (if defined) in <limits.h> or by calling sysconf(_SC_PAGESIZE). On POSIX systems on which mlockall() and munlockall() are available, _POSIX_MEMLOCK is defined in <unistd.h> to a value greater than 0. (See also sysconf(3).) NOTES
Memory locking has two main applications: real-time algorithms and high-security data processing. Real-time applications require determin- istic timing, and, like scheduling, paging is one major cause of unexpected program execution delays. Real-time applications will usually also switch to a real-time scheduler with sched_setscheduler(2). Cryptographic security software often handles critical bytes like pass- words or secret keys as data structures. As a result of paging, these secrets could be transferred onto a persistent swap store medium, where they might be accessible to the enemy long after the security software has erased the secrets in RAM and terminated. (But be aware that the suspend mode on laptops and some desktop computers will save a copy of the system's RAM to disk, regardless of memory locks.) Real-time processes that are using mlockall() to prevent delays on page faults should reserve enough locked stack pages before entering the time-critical section, so that no page fault can be caused by function calls. This can be achieved by calling a function that allocates a sufficiently large automatic variable (an array) and writes to the memory occupied by this array in order to touch these stack pages. This way, enough pages will be mapped for the stack and can be locked into RAM. The dummy writes ensure that not even copy-on-write page faults can occur in the critical section. Memory locks are not inherited by a child created via fork(2) and are automatically removed (unlocked) during an execve(2) or when the process terminates. The memory lock on an address range is automatically removed if the address range is unmapped via munmap(2). Memory locks do not stack, that is, pages which have been locked several times by calls to mlock() or mlockall() will be unlocked by a sin- gle call to munlock() for the corresponding range or by munlockall(). Pages which are mapped to several locations or by several processes stay locked into RAM as long as they are locked at least at one location or by at least one process. Linux Notes Under Linux, mlock() and munlock() automatically round addr down to the nearest page boundary. However, POSIX.1-2001 allows an implementa- tion to require that addr is page aligned, so portable applications should ensure this. The VmLck field of the Linux-specific /proc/PID/status file shows how many kilobytes of memory the calling process has locked using mlock(), mlockall(), shmctl(2) SHM_LOCK, and mmap(2) MAP_LOCKED. Limits and permissions In Linux 2.6.8 and earlier, a process must be privileged (CAP_IPC_LOCK) in order to lock memory and the RLIMIT_MEMLOCK soft resource limit defines a limit on how much memory the process may lock. Since Linux 2.6.9, no limits are placed on the amount of memory that a privileged process can lock and the RLIMIT_MEMLOCK soft resource limit instead defines a limit on how much memory an unprivileged process may lock. BUGS
In the 2.4 series Linux kernels up to and including 2.4.17, a bug caused the mlockall() MCL_FUTURE flag to be inherited across a fork(2). This was rectified in kernel 2.4.18. Since kernel 2.6.9, if a privileged process calls mlockall(MCL_FUTURE) and later drops privileges (loses the CAP_IPC_LOCK capability by, for example, setting its effective UID to a nonzero value), then subsequent memory allocations (e.g., mmap(2), brk(2)) will fail if the RLIMIT_MEMLOCK resource limit is encountered. SEE ALSO
mmap(2), setrlimit(2), shmctl(2), sysconf(3), proc(5), capabilities(7) COLOPHON
This page is part of release 3.27 of the Linux man-pages project. A description of the project, and information about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/. Linux 2010-03-05 MLOCK(2)
All times are GMT -4. The time now is 11:05 PM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy