Sponsored Content
Top Forums UNIX for Dummies Questions & Answers Network down when visitors are over 300 Post 36897 by RTM on Friday 6th of June 2003 11:34:22 AM
Old 06-06-2003
You might want to post what type of hardware is involved. It may help in finding a solution to your problem.
 

We Also Found This Discussion For You

1. Shell Programming and Scripting

have a file with 300 columns

I am using awk to split the file to have 255 columns data in one file and rest in another file. This is the script i am using awk -F"|" '{print > $240}' sourcefilename> targetfilename Since, I cannot import the data into excel sheet , as excel sheet accepts only 255 columns, I am trying to... (4 Replies)
Discussion started by: dummy_needhelp
4 Replies
slalsd.f(3)							      LAPACK							       slalsd.f(3)

NAME
slalsd.f - SYNOPSIS
Functions/Subroutines subroutine slalsd (UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND, RANK, WORK, IWORK, INFO) SLALSD Function/Subroutine Documentation subroutine slalsd (characterUPLO, integerSMLSIZ, integerN, integerNRHS, real, dimension( * )D, real, dimension( * )E, real, dimension( ldb, * )B, integerLDB, realRCOND, integerRANK, real, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO) SLALSD Purpose: SLALSD uses the singular value decomposition of A to solve the least squares problem of finding X to minimize the Euclidean norm of each column of A*X-B, where A is N-by-N upper bidiagonal, and X and B are N-by-NRHS. The solution X overwrites B. The singular values of A smaller than RCOND times the largest singular value are treated as zero in solving the least squares problem; in this case a minimum norm solution is returned. The actual singular values are returned in D in ascending order. This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Parameters: UPLO UPLO is CHARACTER*1 = 'U': D and E define an upper bidiagonal matrix. = 'L': D and E define a lower bidiagonal matrix. SMLSIZ SMLSIZ is INTEGER The maximum size of the subproblems at the bottom of the computation tree. N N is INTEGER The dimension of the bidiagonal matrix. N >= 0. NRHS NRHS is INTEGER The number of columns of B. NRHS must be at least 1. D D is REAL array, dimension (N) On entry D contains the main diagonal of the bidiagonal matrix. On exit, if INFO = 0, D contains its singular values. E E is REAL array, dimension (N-1) Contains the super-diagonal entries of the bidiagonal matrix. On exit, E has been destroyed. B B is REAL array, dimension (LDB,NRHS) On input, B contains the right hand sides of the least squares problem. On output, B contains the solution X. LDB LDB is INTEGER The leading dimension of B in the calling subprogram. LDB must be at least max(1,N). RCOND RCOND is REAL The singular values of A less than or equal to RCOND times the largest singular value are treated as zero in solving the least squares problem. If RCOND is negative, machine precision is used instead. For example, if diag(S)*X=B were the least squares problem, where diag(S) is a diagonal matrix of singular values, the solution would be X(i) = B(i) / S(i) if S(i) is greater than RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to RCOND*max(S). RANK RANK is INTEGER The number of singular values of A greater than RCOND times the largest singular value. WORK WORK is REAL array, dimension at least (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2), where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1). IWORK IWORK is INTEGER array, dimension at least (3*N*NLVL + 11*N) INFO INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: The algorithm failed to compute a singular value while working on the submatrix lying in rows and columns INFO/(N+1) through MOD(INFO,N+1). Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Contributors: Ming Gu and Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA Osni Marques, LBNL/NERSC, USA Definition at line 179 of file slalsd.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 slalsd.f(3)
All times are GMT -4. The time now is 04:32 PM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy