Sponsored Content
Top Forums Shell Programming and Scripting Issues formatting output of two commands in a single line. Post 303038252 by mohtashims on Wednesday 28th of August 2019 10:34:47 PM
Old 08-28-2019
Works !! Thanks @Chubler_XL
 

10 More Discussions You Might Find Interesting

1. Shell Programming and Scripting

Multi-line output to single line

Hello, How can I take the following output: outputa outputb outputc and turn it into single line ouput, with a single space between each field like below: outputa outputb outputc (7 Replies)
Discussion started by: LinuxRacr
7 Replies

2. Shell Programming and Scripting

single line input to multiple line output with sed

hey gents, I'm working on something that will use snmpwalk to query the devices on my network and retreive the device name, device IP, device model and device serial. I'm using Nmap for the enumeration and sed to clean up the results for use by snmpwalk. Once i get all the data organized I'm... (8 Replies)
Discussion started by: mitch
8 Replies

3. Shell Programming and Scripting

Putting multiple sed commands on a single line

Hi, I want to make sed write a part of fileA (first 7 lines) to file1 and the rest of fileA to file2 in a single call and single line in sed. If I do the following: sed '1,7w file1; 8,$w file2' fileA I get only one file named file1 plus all the characters following file1. If I try to use curly... (1 Reply)
Discussion started by: varelg
1 Replies

4. Shell Programming and Scripting

Merge multi-line output into a single line

Hello I did do a search and the past threads doesn't really solve my issue. (using various awk commands) I need to combine the output from java -version into 1 line, but I am having difficulties. When you exec java -version, you get: java version "1.5.0_06" Java(TM) 2 Runtime... (5 Replies)
Discussion started by: flagman5
5 Replies

5. UNIX for Dummies Questions & Answers

Multiple Commands on a Single Line

Hi There, I have a cronjob that executes a small script (few lines) that I am certain can be achieved in a single line. The functional objective is actually really simple; cmd var1 The '1' in 'var1' is actually derived from date (day of month) but the snag is when working with 1-9 I... (3 Replies)
Discussion started by: Random79
3 Replies

6. UNIX for Dummies Questions & Answers

Redirecting the multiple commands output to single file

Hi, I am new to shell scripting and have a question. I would like to redirect the output of multple commands to single file, From what I read from the bash manpage and from some searching it seems it cannot be done within the shell except setting up a loop. Is it? I am running all clearcase... (1 Reply)
Discussion started by: saku
1 Replies

7. Shell Programming and Scripting

Joining multi-line output to a single line in a group

Hi, My Oracle query is returing below o/p ---------------------------------------------------------- Ins trnas value a lkp1 x a lkp1 y b lkp1 a b lkp2 x b lkp2 y ... (7 Replies)
Discussion started by: gvk25
7 Replies

8. Shell Programming and Scripting

convert single line output to multiple line

Hi all, I have a single line output like below echo $ips 10.26.208.28 10.26.208.26 10.26.208.27 want to convert above single line output as below format. Pls advice how to do ? 10.26.208.28 10.26.208.26 10.26.208.27 Regards Kannan (6 Replies)
Discussion started by: kamauv234
6 Replies

9. Shell Programming and Scripting

Formatting File having big single line into 95 Char Per Line

Hi All, I have 4 big files which contains one big line containing formatted character records, I need to format each file in such way that each File will have 95 Characters per line. Last line of each file will have newline character at end. Before:- File Name:- File1.dat 102 121340560... (10 Replies)
Discussion started by: lancesunny
10 Replies

10. UNIX for Beginners Questions & Answers

Output to file print as single line, not separate line

example of problem: when I echo "$e" >> /home/cogiz/file.txt result prints to file as:AA BB CC I need it to save to file as this:AA BB CC I know it's probably something really simple but any help would be greatly appreciated. Thank You. Cogiz (7 Replies)
Discussion started by: cogiz
7 Replies
Complex(3pm)						User Contributed Perl Documentation					      Complex(3pm)

NAME
PDL::Complex - handle complex numbers SYNOPSIS
use PDL; use PDL::Complex; DESCRIPTION
This module features a growing number of functions manipulating complex numbers. These are usually represented as a pair "[ real imag ]" or "[ angle phase ]". If not explicitly mentioned, the functions can work inplace (not yet implemented!!!) and require rectangular form. While there is a procedural interface available ("$a/$b*$c <=> Cmul (Cdiv $a, $b), $c)"), you can also opt to cast your pdl's into the "PDL::Complex" datatype, which works just like your normal piddles, but with all the normal perl operators overloaded. The latter means that "sin($a) + $b/$c" will be evaluated using the normal rules of complex numbers, while other pdl functions (like "max") just treat the piddle as a real-valued piddle with a lowest dimension of size 2, so "max" will return the maximum of all real and imaginary parts, not the "highest" (for some definition) TIPS, TRICKS &; CAVEATS o "i" is a constant exported by this module, which represents "-1**0.5", i.e. the imaginary unit. it can be used to quickly and conviniently write complex constants like this: "4+3*i". o Use "r2C(real-values)" to convert from real to complex, as in "$r = Cpow $cplx, r2C 2". The overloaded operators automatically do that for you, all the other functions, do not. So "Croots 1, 5" will return all the fifths roots of 1+1*i (due to threading). o use "cplx(real-valued-piddle)" to cast from normal piddles into the complex datatype. Use "real(complex-valued-piddle)" to cast back. This requires a copy, though. o This module has received some testing by Vanuxem Gregory (g.vanuxem at wanadoo dot fr). Please report any other errors you come across! EXAMPLE WALK-THROUGH The complex constant five is equal to "pdl(1,0)": pdl> p $x = r2C 5 5 +0i Now calculate the three roots of of five: pdl> p $r = Croots $x, 3 [1.70998 +0i -0.854988 +1.48088i -0.854988 -1.48088i] Check that these really are the roots of unity: pdl> p $r ** 3 [5 +0i 5 -1.22465e-15i 5 -7.65714e-15i] Duh! Could be better. Now try by multiplying $r three times with itself: pdl> p $r*$r*$r [5 +0i 5 -4.72647e-15i 5 -7.53694e-15i] Well... maybe "Cpow" (which is used by the "**" operator) isn't as bad as I thought. Now multiply by "i" and negate, which is just a very expensive way of swapping real and imaginary parts. pdl> p -($r*i) [0 -1.70998i 1.48088 +0.854988i -1.48088 +0.854988i] Now plot the magnitude of (part of) the complex sine. First generate the coefficients: pdl> $sin = i * zeroes(50)->xlinvals(2,4) + zeroes(50)->xlinvals(0,7) Now plot the imaginary part, the real part and the magnitude of the sine into the same diagram: pdl> line im sin $sin; hold pdl> line re sin $sin pdl> line abs sin $sin Sorry, but I didn't yet try to reproduce the diagram in this text. Just run the commands yourself, making sure that you have loaded "PDL::Complex" (and "PDL::Graphics::PGPLOT"). FUNCTIONS
cplx real-valued-pdl Cast a real-valued piddle to the complex datatype. The first dimension of the piddle must be of size 2. After this the usual (complex) arithmetic operators are applied to this pdl, rather than the normal elementwise pdl operators. Dataflow to the complex parent works. Use "sever" on the result if you don't want this. complex real-valued-pdl Cast a real-valued piddle to the complex datatype without dataflow and inplace. Achieved by merely reblessing a piddle. The first dimension of the piddle must be of size 2. real cplx-valued-pdl Cast a complex valued pdl back to the "normal" pdl datatype. Afterwards the normal elementwise pdl operators are used in operations. Dataflow to the real parent works. Use "sever" on the result if you don't want this. r2C Signature: (r(); [o]c(m=2)) convert real to complex, assuming an imaginary part of zero r2C does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. i2C Signature: (r(); [o]c(m=2)) convert imaginary to complex, assuming a real part of zero i2C does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Cr2p Signature: (r(m=2); float+ [o]p(m=2)) convert complex numbers in rectangular form to polar (mod,arg) form. Works inplace Cr2p does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Cp2r Signature: (r(m=2); [o]p(m=2)) convert complex numbers in polar (mod,arg) form to rectangular form. Works inplace Cp2r does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Cmul Signature: (a(m=2); b(m=2); [o]c(m=2)) complex multiplication Cmul does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Cprodover Signature: (a(m=2,n); [o]c(m=2)) Project via product to N-1 dimension Cprodover does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Cscale Signature: (a(m=2); b(); [o]c(m=2)) mixed complex/real multiplication Cscale does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Cdiv Signature: (a(m=2); b(m=2); [o]c(m=2)) complex division Cdiv does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Ccmp Signature: (a(m=2); b(m=2); [o]c()) Complex comparison oeprator (spaceship). It orders by real first, then by imaginary. Hm, but it is mathematical nonsense! Complex numbers cannot be ordered. Ccmp does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Cconj Signature: (a(m=2); [o]c(m=2)) complex conjugation. Works inplace Cconj does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Cabs Signature: (a(m=2); [o]c()) complex "abs()" (also known as modulus) Cabs does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Cabs2 Signature: (a(m=2); [o]c()) complex squared "abs()" (also known squared modulus) Cabs2 does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Carg Signature: (a(m=2); [o]c()) complex argument function ("angle") Carg does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Csin Signature: (a(m=2); [o]c(m=2)) sin (a) = 1/(2*i) * (exp (a*i) - exp (-a*i)). Works inplace Csin does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Ccos Signature: (a(m=2); [o]c(m=2)) cos (a) = 1/2 * (exp (a*i) + exp (-a*i)). Works inplace Ccos does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Ctan a [not inplace] tan (a) = -i * (exp (a*i) - exp (-a*i)) / (exp (a*i) + exp (-a*i)) Cexp Signature: (a(m=2); [o]c(m=2)) exp (a) = exp (real (a)) * (cos (imag (a)) + i * sin (imag (a))). Works inplace Cexp does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Clog Signature: (a(m=2); [o]c(m=2)) log (a) = log (cabs (a)) + i * carg (a). Works inplace Clog does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Cpow Signature: (a(m=2); b(m=2); [o]c(m=2)) complex "pow()" ("**"-operator) Cpow does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Csqrt Signature: (a(m=2); [o]c(m=2)) Works inplace Csqrt does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Casin Signature: (a(m=2); [o]c(m=2)) Works inplace Casin does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Cacos Signature: (a(m=2); [o]c(m=2)) Works inplace Cacos does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Catan cplx [not inplace] Return the complex "atan()". Csinh Signature: (a(m=2); [o]c(m=2)) sinh (a) = (exp (a) - exp (-a)) / 2. Works inplace Csinh does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Ccosh Signature: (a(m=2); [o]c(m=2)) cosh (a) = (exp (a) + exp (-a)) / 2. Works inplace Ccosh does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Ctanh Signature: (a(m=2); [o]c(m=2)) Works inplace Ctanh does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Casinh Signature: (a(m=2); [o]c(m=2)) Works inplace Casinh does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Cacosh Signature: (a(m=2); [o]c(m=2)) Cacosh does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Catanh Signature: (a(m=2); [o]c(m=2)) Works inplace Catanh does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Cproj Signature: (a(m=2); [o]c(m=2)) compute the projection of a complex number to the riemann sphere. Works inplace Cproj does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. Croots Signature: (a(m=2); [o]c(m=2,n); int n => n) Compute the "n" roots of "a". "n" must be a positive integer. The result will always be a complex type! Croots does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. re cplx, im cplx Return the real or imaginary part of the complex number(s) given. These are slicing operators, so data flow works. The real and imaginary parts are returned as piddles (ref eq PDL). rCpolynomial Signature: (coeffs(n); x(c=2,m); [o]out(c=2,m)) evaluate the polynomial with (real) coefficients "coeffs" at the (complex) position(s) "x". "coeffs[0]" is the constant term. rCpolynomial does not process bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. AUTHOR
Copyright (C) 2000 Marc Lehmann <pcg@goof.com>. All rights reserved. There is no warranty. You are allowed to redistribute this software / documentation as described in the file COPYING in the PDL distribution. SEE ALSO
perl(1), PDL. perl v5.14.2 2012-05-30 Complex(3pm)
All times are GMT -4. The time now is 08:58 AM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy