Sponsored Content
Full Discussion: Gap length between intervals
Top Forums UNIX for Dummies Questions & Answers Gap length between intervals Post 302956444 by vbe on Wednesday 30th of September 2015 04:16:06 AM
Old 09-30-2015
A hint:
Code:
while read VAR1 VAR2
do
   echo $VAR2 " " $VAR1
done<your_file

With the above you should be able to figure out the next step...

Cheers
This User Gave Thanks to vbe For This Post:
 

7 More Discussions You Might Find Interesting

1. Shell Programming and Scripting

creating a fixed length output from a variable length input

Is there a command that sets a variable length? I have a input of a variable length field but my output for that field needs to be set to 32 char. Is there such a command? I am on a sun box running ksh Thanks (2 Replies)
Discussion started by: r1500
2 Replies

2. UNIX for Dummies Questions & Answers

Sed working on lines of small length and not large length

Hi , I have a peculiar case, where my sed command is working on a file which contains lines of small length. sed "s/XYZ:1/XYZ:3/g" abc.txt > xyz.txt when abc.txt contains lines of small length(currently around 80 chars) , this sed command is working fine. when abc.txt contains lines of... (3 Replies)
Discussion started by: thanuman
3 Replies

3. Shell Programming and Scripting

Decrease the Line Gap in a files and Echo a strings

Hi Expert, I have a file contains-- GET:RSUB:ISI,432350114637601; RESP:0:MDN,9352608473:ISI,432350114637601:T11,1:T21,1:T22,1:B16,1:T62,1:BAIC,0:BAOC,0:BOIC,0:BIRO,0:BORO,0:BOIH,0:BOS4,0:CLIP,1:CLIR,0:CFB,1; GET:RSUB:ISI,432350114281653; ... (5 Replies)
Discussion started by: thepurple
5 Replies

4. Shell Programming and Scripting

How to use while loop in bash shell to read a file with 4 lines of gap

Hi , I am currently using the while loop in bash shell, as follows. while read line do echo $line done < file.txt However, i want to use the while loop on file.txt, which will read the file with 4 lines of gap. Ex- if file.txt is a file of 100 lines, then i want to use the loop such... (3 Replies)
Discussion started by: jitendriya.dash
3 Replies

5. Shell Programming and Scripting

Need to find the gap in the sequence of numbers

Hi Guys, I have a file with numbers in sequence. The sequence have been broken somewhere.. I need to find out at which number the sequence has been broken... For an example, consider this sequence, it needs to give me output as 4 (as 5 is missing) and 6(as 7 is missing) Thanks for... (3 Replies)
Discussion started by: mac4rfree
3 Replies

6. Shell Programming and Scripting

Flat file-make field length equal to header length

Hello Everyone, I am stuck with one issue while working on abstract flat file which i have to use as input and load data to table. Input Data- ------ ------------------------ ---- ----------------- WFI001 Xxxxxx Control Work Item A Number of Records ------ ------------------------... (5 Replies)
Discussion started by: sonali.s.more
5 Replies

7. Shell Programming and Scripting

Finding contiguous numbers in a list but with a gap number tolerance

Dear all, I have a imput file like this imput scaffold_0 10558458 10558459 1.8 scaffold_0 10558464 10558465 1.75 scaffold_0 10558467 10558468 1.8 scaffold_0 10558468 10558469 1.71428571428571 scaffold_0 10558469... (5 Replies)
Discussion started by: valente
5 Replies
slaebz.f(3)							      LAPACK							       slaebz.f(3)

NAME
slaebz.f - SYNOPSIS
Functions/Subroutines subroutine slaebz (IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL, RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT, NAB, WORK, IWORK, INFO) SLAEBZ Function/Subroutine Documentation subroutine slaebz (integerIJOB, integerNITMAX, integerN, integerMMAX, integerMINP, integerNBMIN, realABSTOL, realRELTOL, realPIVMIN, real, dimension( * )D, real, dimension( * )E, real, dimension( * )E2, integer, dimension( * )NVAL, real, dimension( mmax, * )AB, real, dimension( * )C, integerMOUT, integer, dimension( mmax, * )NAB, real, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO) SLAEBZ Purpose: SLAEBZ contains the iteration loops which compute and use the function N(w), which is the count of eigenvalues of a symmetric tridiagonal matrix T less than or equal to its argument w. It performs a choice of two types of loops: IJOB=1, followed by IJOB=2: It takes as input a list of intervals and returns a list of sufficiently small intervals whose union contains the same eigenvalues as the union of the original intervals. The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP. The output interval (AB(j,1),AB(j,2)] will contain eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT. IJOB=3: It performs a binary search in each input interval (AB(j,1),AB(j,2)] for a point w(j) such that N(w(j))=NVAL(j), and uses C(j) as the starting point of the search. If such a w(j) is found, then on output AB(j,1)=AB(j,2)=w. If no such w(j) is found, then on output (AB(j,1),AB(j,2)] will be a small interval containing the point where N(w) jumps through NVAL(j), unless that point lies outside the initial interval. Note that the intervals are in all cases half-open intervals, i.e., of the form (a,b] , which includes b but not a . To avoid underflow, the matrix should be scaled so that its largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value. To assure the most accurate computation of small eigenvalues, the matrix should be scaled to be not much smaller than that, either. See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal Matrix", Report CS41, Computer Science Dept., Stanford University, July 21, 1966 Note: the arguments are, in general, *not* checked for unreasonable values. Parameters: IJOB IJOB is INTEGER Specifies what is to be done: = 1: Compute NAB for the initial intervals. = 2: Perform bisection iteration to find eigenvalues of T. = 3: Perform bisection iteration to invert N(w), i.e., to find a point which has a specified number of eigenvalues of T to its left. Other values will cause SLAEBZ to return with INFO=-1. NITMAX NITMAX is INTEGER The maximum number of "levels" of bisection to be performed, i.e., an interval of width W will not be made smaller than 2^(-NITMAX) * W. If not all intervals have converged after NITMAX iterations, then INFO is set to the number of non-converged intervals. N N is INTEGER The dimension n of the tridiagonal matrix T. It must be at least 1. MMAX MMAX is INTEGER The maximum number of intervals. If more than MMAX intervals are generated, then SLAEBZ will quit with INFO=MMAX+1. MINP MINP is INTEGER The initial number of intervals. It may not be greater than MMAX. NBMIN NBMIN is INTEGER The smallest number of intervals that should be processed using a vector loop. If zero, then only the scalar loop will be used. ABSTOL ABSTOL is REAL The minimum (absolute) width of an interval. When an interval is narrower than ABSTOL, or than RELTOL times the larger (in magnitude) endpoint, then it is considered to be sufficiently small, i.e., converged. This must be at least zero. RELTOL RELTOL is REAL The minimum relative width of an interval. When an interval is narrower than ABSTOL, or than RELTOL times the larger (in magnitude) endpoint, then it is considered to be sufficiently small, i.e., converged. Note: this should always be at least radix*machine epsilon. PIVMIN PIVMIN is REAL The minimum absolute value of a "pivot" in the Sturm sequence loop. This must be at least max |e(j)**2|*safe_min and at least safe_min, where safe_min is at least the smallest number that can divide one without overflow. D D is REAL array, dimension (N) The diagonal elements of the tridiagonal matrix T. E E is REAL array, dimension (N) The offdiagonal elements of the tridiagonal matrix T in positions 1 through N-1. E(N) is arbitrary. E2 E2 is REAL array, dimension (N) The squares of the offdiagonal elements of the tridiagonal matrix T. E2(N) is ignored. NVAL NVAL is INTEGER array, dimension (MINP) If IJOB=1 or 2, not referenced. If IJOB=3, the desired values of N(w). The elements of NVAL will be reordered to correspond with the intervals in AB. Thus, NVAL(j) on output will not, in general be the same as NVAL(j) on input, but it will correspond with the interval (AB(j,1),AB(j,2)] on output. AB AB is REAL array, dimension (MMAX,2) The endpoints of the intervals. AB(j,1) is a(j), the left endpoint of the j-th interval, and AB(j,2) is b(j), the right endpoint of the j-th interval. The input intervals will, in general, be modified, split, and reordered by the calculation. C C is REAL array, dimension (MMAX) If IJOB=1, ignored. If IJOB=2, workspace. If IJOB=3, then on input C(j) should be initialized to the first search point in the binary search. MOUT MOUT is INTEGER If IJOB=1, the number of eigenvalues in the intervals. If IJOB=2 or 3, the number of intervals output. If IJOB=3, MOUT will equal MINP. NAB NAB is INTEGER array, dimension (MMAX,2) If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)). If IJOB=2, then on input, NAB(i,j) should be set. It must satisfy the condition: N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)), which means that in interval i only eigenvalues NAB(i,1)+1,...,NAB(i,2) will be considered. Usually, NAB(i,j)=N(AB(i,j)), from a previous call to SLAEBZ with IJOB=1. On output, NAB(i,j) will contain max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of the input interval that the output interval (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the the input values of NAB(k,1) and NAB(k,2). If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)), unless N(w) > NVAL(i) for all search points w , in which case NAB(i,1) will not be modified, i.e., the output value will be the same as the input value (modulo reorderings -- see NVAL and AB), or unless N(w) < NVAL(i) for all search points w , in which case NAB(i,2) will not be modified. Normally, NAB should be set to some distinctive value(s) before SLAEBZ is called. WORK WORK is REAL array, dimension (MMAX) Workspace. IWORK IWORK is INTEGER array, dimension (MMAX) Workspace. INFO INFO is INTEGER = 0: All intervals converged. = 1--MMAX: The last INFO intervals did not converge. = MMAX+1: More than MMAX intervals were generated. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: This routine is intended to be called only by other LAPACK routines, thus the interface is less user-friendly. It is intended for two purposes: (a) finding eigenvalues. In this case, SLAEBZ should have one or more initial intervals set up in AB, and SLAEBZ should be called with IJOB=1. This sets up NAB, and also counts the eigenvalues. Intervals with no eigenvalues would usually be thrown out at this point. Also, if not all the eigenvalues in an interval i are desired, NAB(i,1) can be increased or NAB(i,2) decreased. For example, set NAB(i,1)=NAB(i,2)-1 to get the largest eigenvalue. SLAEBZ is then called with IJOB=2 and MMAX no smaller than the value of MOUT returned by the call with IJOB=1. After this (IJOB=2) call, eigenvalues NAB(i,1)+1 through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the tolerance specified by ABSTOL and RELTOL. (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l). In this case, start with a Gershgorin interval (a,b). Set up AB to contain 2 search intervals, both initially (a,b). One NVAL element should contain f-1 and the other should contain l , while C should contain a and b, resp. NAB(i,1) should be -1 and NAB(i,2) should be N+1, to flag an error if the desired interval does not lie in (a,b). SLAEBZ is then called with IJOB=3. On exit, if w(f-1) < w(f), then one of the intervals -- j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r >= 0, then the interval will have N(AB(j,1))=NAB(j,1)=f-k and N(AB(j,2))=NAB(j,2)=f+r. The cases w(l) < w(l+1) and w(l-r)=...=w(l+k) are handled similarly. Definition at line 318 of file slaebz.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 slaebz.f(3)
All times are GMT -4. The time now is 12:29 PM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy